Multimodal Learning for Videos

Arsha Nagrani
+ Work by many others

The artist brain is'the sensory
brain: sight and'sound, smell
and taste, touch. These are the
elements of magic.

— Julia Cameron
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Overview

* Why do we need multimodal learning?

> Both a human and machine perspective
* How can we use it?

> Cross-modal learning

> Multimodal fusion

> MBT (NeurlPS 2021), VideoCC (ArXiv 2022), AVATAR (Interspeech 2022)



What is multimodal learning?

Learning with more than one input data type

Images/
Videos

Numerical Textual Data

@v

Speech/
Sound



Why do we need it?
Look at a useful biological prototype - Humans

% We perceive the world with multiple sensory systems— vision, audition, touch,
smell, proprioception, balance

(1) Degeneracy in neural structure

> A system functions even with the loss of one component
> Eg. Spatial properties are developed even in the blind, using touch,
echolocation with tongue clicks and cane taps



Why do we need it?
Look at a useful biological prototype - Humans

K/

% We perceive the world with multiple sensory systems— vision, audition, touch,
smell, proprioception, balance

(2) Sensory systems can educate each other

> Learn to associate multiple representations - time locked and correlated
> Children spend hours gazing at their own hands, touching and feeling
objects (Yuan et al 2019)



Transparency is difficult to learn

* 8 month old infants often struggle to retrieve from transparent boxes

* Infants who play with the objects physically were able to retrieve objects better
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Figure 2. A toy (ball) hidden under a transparent box and an opaque box in the Diamond task. The opening is indicated
by the arrow.

Titzer, Thelen, and Smith et al



Why do we need it?
Look at a useful biological prototype - Humans

K/

% We perceive the world with multiple sensory systems— vision, audition, touch,
smell, proprioception, balance

(3) Fusion of multiple senses helps with robustness

> Use multiple signals to come to a conclusion
> What we see affects what we hear and vice-versa, eg. the McGurk Effect



Machine learning perspective

** Robustness: Content on the web is inherently multimodal (captions, text, titles,
descriptions). Why limit ourselves to use only one?
* Self-supervision: Use redundancy to learn with fewer labels
* Applications: Some applications are inherently multimodal
> Video captioning Video-> Text
> Automatic Speech recognition Audio -> Text



How can we use it? Some examples

1. Cross-modal supervision: Use one modality to help learn in another
a. Labelling data manually is tough
i. expensive and subjective, hours of human time
b. Use knowledge in one modality to inform another modality
c. This can give us a source of ‘free supervision’
d. Exploits ‘redundancy’
2. Fusion: Combine multiple modalities for robustness Modality A Modality B
a. Exploits ‘complementarity’

Complementary Redundant



How can we use it? Dive into some recent papers

Audio + RGB Fusion: Combine multiple modalities for robustness

a. New transformer fusion architecture for video classification (NeurlPS 2021)
b. Learning audio-visual modalities from image captions (ArXiv 2022)
c. Audio-visual fusion for ASR (Interspeech 2022)

Action recognition, video retrieval

Speech Text
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MBT: Attention Bottlenecks
for Multimodal Fusion

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen,
Cordelia Schmid, Chen Sun

NeurlPS 2021




Multimodal Fusion

Video is inherently multimodal - audio, vision, text etc

Uni-modal inputs can be missing, corrupted, occluded, or have various levels of
background noise

% Multimodal Fusion allows robustness, and disambiguation

% We want a single multimodal model that is:

> Robust

> Efficient and Scalable

> Variable Length Inputs

S o
o P



Google Research

Independent Communities

Multimodal Inputs
Late Fusion

% Heterogeneity of inputs (RGB frames, audio
spectrograms) Classifier Classifier
% Specialised architectures

< Different datasets and evaluation benchmarks

Video Audio
Encoder Encoder

‘WW

MBT: Attention Bottlenecks for Multimodal Fusion
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Independent Communities - Late Fusion

Multimodal Inputs
Late Fusion

% Heterogeneity of inputs (RGB frames, audio

spectrograms) Classifier Classifier
% Specialised architectures
% Different datasets and evaluation benchmarks

Video Audio
Encoder Encoder

‘WW

AUDIO-VISUAL SCENE ANALYSIS

Evidence for a “very-early” integration process in audio-visual speech perception

“The Dominant Paradigm”
% Different encoders
% Output scores or representations are fused right at
the end
% Thisis in contrast to human perception (early or mid
fusion)

MBT: Attention Bottlenecks for Multimodal Fusion Jean-Luc Schwartz, Frédéric Berthommier, Christophe Savariaux



Advantages of Transformers

K/
X

Great for modelling context

> Each token can have access to all other tokens in the sequence

% A generic architecture:

> Qperates on any inputs that can be tokenized! “Universal Perceptual Models”

< Parallelizable

% Empirically shown to perform excellently at scale

1

Transformer Encoder
Modality-Specific OR Modality-Agnostic

T T

1 H f T T
e, 8000000 0

Modality-Specific Patch + Position Embedding

Linear Projection Linear Projection Linear Projection
(3D RGB voxels) (1D waveform) (1-hot word vectors)
il - “Sled dogs running on the
m . ﬂ m W snow pulling the sled.”
Input Video Input Audio Waveform Input Text

Akbari, H., Yuan, L., Qian, R., Chuang, W.
H., Chang, S. F., Cui, Y., & Gong, B. 2021.
Vatt: Transformers for multimodal self-
supervised learning from raw video, audio
and text. NeurlPS

Google Research



Transformers for early fusion?

Google Research

% Transformers have had great success on different modalities individually

% Operate on tokens (and any modality can be tokenized)

% SOTA for Text (BERT), Images (ViT), Videos (ViViT, Timesformer), Audio (AST)
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A Vanilla Multimodal Transformer

% Tokenize RGB frame and spectrogram patches
% Universal Perception model - feed all tokens to a transformer
% Pairwise self-attention between all tokens (early fusion)

oS e gho_ v LTI AT I L spec.
—»EIEI IIII
RGB frame patches Audio spectrogram patches

% scales quadratically with sequence length
% video has a lot of redundancy

MBT: Attention Bottlenecks for Multimodal Fusion
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Multimodal Bottleneck Transformers (MBT)

% Introduce a small number of bottleneck tokens (B=4)

% Full pairwise self attention within a modality

% Attention between the visual tokens and the bottleneck tokens
Attention between the audio tokens and the bottleneck tokens

o
S

*

Multimodal = o TTT ATl spec.

S

Audio spectrogram patches

?

MBT: Attention Bottlenecks for Multimodal Fusion
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Do all layers need to be cross-modal?

% Restrict cross-modal information to later layers (mid-fusion)
% The layer we introduce cross-modal interactions is called the “fusion layer”
% Allows early layers to “specialise” to unimodal patterns

Bottleneck Mid Fusion

RGB frames audio spectrogram RGB frames audio spectrogram

MBT: Attention Bottlenecks for Multimodal Fusion
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Improved performance and efficiency

% Mid Fusion outperforms early and late fusion on most datasets
% Using bottlenecks improves performance and reduces computational cost

+Attention Bottlenecks =a=Vanilla Cross-Attention
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MBT: Attention Bottlenecks for Multimodal Fusion
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Results on 6 video classification datasets

Apply our model to two different video classification tasks

L1 Action Recognition <) Sound Event Classification

Human sounds Animal

Kinetics Epic Kitchens Audioset I——
Moments in Time VGGSound [ g works snimals

— Respiratory sounds

— Domestic animals, pets

. — Wild animals
+— Human lscomotion

Kinetics-Sounds | ..

Sounds of things
— Hands

|— Livestock, farm animals,

MBT: Attention Bottlenecks for Multimodal Fusion

— Vehicle
(— Heart sounds, heartbeat

|~ Engine
I— Otoacoustic emission

‘ — Domestic sounds,

‘— Human group actions home sounds

— Bell
Source-ambiguous L Alarm

sounds

— Mechanisms

Generic impact sounds — Tools
Surface contact — Explosion
Deformable shell — Wood
Onomatopoeia — Glass
Silence — Ligquid

Other sourceless

— Miscellaneous sources

— Specific impact sounds

Music

— Musical instrument
— Music genre

— Musical concepts
— Music role

— Music mood

Natural sounds

— Wind
— Thunderstorm

— Water

— Fire

Channel, environment
and background
Acoustic environment

Noise

Sound reproduction



State of the art performance

Model

Training Set

Aonly Vonly AV Fusion

GBlend [
GBlend [
Attn Audio-Visual [ 1]

]
]

Perceiver [7V]

MiniAS

FullAS-2M
FullAS-2M
FullAS-2M

29.1
324
38.4

22.1
18.8
25.7

37.8
41.8
46.2

Table 1: Comparison to the state of the art on AudioSet [””]. We report mean average precision
(mAP). For audio-visual fusion, our method outperforms others that use the entire AudioSet training

set (almost 2M samples), while we train on only 500K.

Model Modalities Verb Noun Action
Damen et al. [| /] A 421 215 14.8
AudioSlowFast [*4]f A 46.5 2278 15.4
TSN [7] V,F 60.2 46.0 332
TRN [7] V,F 659 454 353
TBN [7] A, V,F 66.0 472 36.7
TSM [7] V,F 67.9 49.0 38.3
SlowFast [ (] \' 65.6 50.0 38.5
"MBT A 443 224 130
MBT \'% 62.0 564 40.7
MBT AV 64.8 58.0 43.4

Table 2: Comparison to the state of the art on Epic Kitchens 100 [ ']. Modalities (Mods) are A:

Audio, V: Visual, F: Optical flow.

MBT.. iiiciiiin cututiivuns 1on v+ usion

Google Research

Model Top-1 Acc  Top-5 Acc
Chen et alt [11] 48.8 76.5
AudioSlowFast} [ 50.1 77.9
"MBT A 523 781
MBT 51.2 72.6
MBT 64.1 85.6

Table 3: Comparison to the state of the art on VGGSound [ ']. Modalities are A: Audio, V:
Visual, F: Optical flow. 1 Uses pretraining on VGGSound. § We calculate metrics on our test set for

a fair comparison using the scores provided by the authors.



Ablations

Google Research

% For earlier fusion, separate weights for each modality is beneficial
% Asynchronous sampling provides a slight boost

separate encoders
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MBT: Attention Bottlenecks for Multimodal Fusion
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More modalities?

Our framework is general

Can we used for any modality that can be tokenized

Also can be used with any number of modalities

So far we have added optical flow and are working on adding text

K/ K/ K/ K/
L X X R X I X4

________________________________________________________________________________

Multimodal Bottlenecks ' RGBProjection | . Flow Projection | ' Audio Projection |
RGB patches Flow patches Spectrogram patches

MBT: Attention Bottlenecks for Multimodal Fusion
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Attention Heatmaps

Focus on smaller regions, sound sources (mouth, fingertips)

Mid Frame Vanilla Fusion Mid Frame Vanilla Fusion MBT
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Conclusion

% Single transformer model for Multimodal Fusion
% Resources:
> ArXiv, Webpage, Google Al blog
% Models are developed in JAX and FLAX.
> We use the scenic codebase, code has been open-sourced and models
released

MBT: Attention Bottlenecks for Multimodal Fusion


https://arxiv.org/pdf/2107.00135.pdf
https://a-nagrani.github.io/mbt.html
https://ai.googleblog.com/2022/03/multimodal-bottleneck-transformer-mbt.html
https://github.com/google-research/scenic/tree/main/scenic/projects/mbt
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VideoCC: Learning Audio-Video
Modalities from Image Captions

Arsha Nagrani, Paul Hongsuck Seo, Bryan Seybold, Anja
Hauth, Santiago Manen, Chen Sun, Cordelia Schmid,

Under submission, 2022




Why is paired video and text data so valuable?

% Natural language descriptions can be as detailed or as coarse as we like, no need to

define a fixed label space
« Applications
> Video captioning, video retrieval, videoQA etc
% From an Al perspective
> Natural language (communicate), videos (perceive)
> Bridge the gap between human communication and perception

“Person throws
a pitch during a
game against
university”

Google Research



Existing datasets , :
Video - Text Audio - Text

Manually Labelled ActivityNet-captions, MSR- AudioCaps, CLOTHO

Expensive, time-consuming, Y11 MSVD, YouCook2, etc

=>small SpokenMiT

Semi-automatic/automatic = HowTo0100M, WebVideoText,

Weak, noisy Instagram Hashtags,

=> require millions of samples
to get good performance
=> text is not really a ‘caption’

Image captioning datasets, however, such as Conceptual Captions are large (millions), and

relatively clean
Google Research



Transfer image captions to video and audio modalities

% Start with a seed image-captioning dataset
% Find frames in videos with high similarity scores to the seed image.
% Extract short video clips around the matching frames and transfer the caption

Online Video
Image Frames Threshold = 0.6
Captioning
Dataset

Match

iAW

- f(x)

il image-image

i} similarity
*

“pop artist performs
at the festival in a
city”

Similarity
SL0Ies VideoCC Dataset

Transfer caption | Go g|€ Research




Transfer image captions to video and audio modalities
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Captions == Clips
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Zero-shot on MSR
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Figure 4. Effect of match threshold 7 on mining statistics (left)
and zero-shot performance on MSR-VTT (right). Increasing the
threshold beyond 0.6 decreases the size of the dataset, which leads
to a corresponding performance drop on zero-shot retrieval. We
use an optimal match threshold of 0.6.

% Use the Conceptual Captions 3M dataset as the image captioning seed dataset
% Image features extracted for YouTube frames at 1fps

t(s) 3 5 10 20 30
MSR-VTT (ZS) 164 17.1 189 18.8 18.8

Table 8. Temporal Span ¢ of the mined clips. We report zero-
shot R@1 performance on the MSR-VTT dataset.

Google Research



VideoCC3M - Properties

O
%

7
L ¥4

7
L ¥4

O
%

O
%

7
L X4

VideoCC3M:

> CC3M seed datasets. 10.3M pairs, 6.3M videos, 970K unique captions
Alignment: Highly likely that at least one frame is aligned to the caption
Less Specialised: Multiple captions per video clip and multiple videos per caption
Diversity: More balanced and diverse than HowTo100M
Multimodal: Both audio and video (unlike WebVid-2M)
Fairness: Filtered for fairness

) Food
VideoCC HowTo100M Hobby
Vehicle
Gardening
Technology
Animal

Other
Culture
Home improvement
Beauty tips
Science
Video Games

Frequency (log)

50 100 150
Number of clips per caption



VideoCC3M - Examples

Caption Seed Image Mined Videos

“Person throws
a pitch during a
game against
university”

“Rap artist
perform
onstage during
day at festival”

“Sea anemone
in a dark blue
water of
aquarium”

“And this is a
statue”




VideoCC3M - Examples

Caption Seed Image Mined Videos

“A black bear in
a forest”

“Palm trees on
a white
background in
cartoon style

“A lonely figure
stands on an
endless icy
field”

“Welcome
dinner table
decor”




Level of noise in the data

% Manual Study of 100 samples: 91/100 are relevant
> 9 not relevant, 31 somewhat relevant, 60 highly relevant

Caption Seed Image Mined Videos
p

“The robot playing
electric guitar.”

“Cricket player
embraces cricket
player on scoring the
winning runs during
the international cricket
match

“The view of a red car
blurred through broken
glass




Results - Video Retrieval

SOTA
.. . .. Method Visual-Text PT # Caps R@1 R@5 R@10
Training on VideoCC3M outperforms training on p——

HowTol1l00M with 20x less data HERO [ /1] HowTo100M 136M 168 434 577
NoiseEst. [ ] HowTo100M 136M 174  41.6 53.6
CE[ ]t = 209 488 624

UniVL [ 1] HowTo100M 136M 21.2 49.6 63.1
ClipBERT [ "] Coco, VisGen 5.6M 22.0 46.8 59.9
Pretraining Data Modality # Caps R@1 R@5 R@10 AVLnet [ 1] HowTo100M 136M  27.1 556  66.6

- \ - 302 607 7L1 - ; : :
Support Set [']  HowTol00M 136M  30.1 585 69.3
HowTol00M [] v I30M 331 623 723 VideoCLIP[ /] HowTol0OM  136M 309 554 6658
VideoCC3M \'% 970K 35.0 63.1 75.1 FIT [] CO3M IM 255 545 66.1
Zero-shot Ours VideoCC3M 970K 358 651 769

HowTol100M [17] A% 130M 8.6 16.9 25.8 Zero-shot

VideoCC3M v 970K 18.9 37.5 47.1 MIL-NCE [ ] HowTol100M 136M 75 21.2 29.6
VideoCC3M A+V 970K 194 395 503 SupportSet [ /]  HowTol00M 136M 87 230  3l.1
VideoCLIP [ '] HowTolOOM 136M 10.4 22.2 30.0
.. i . FIT [] WebVid2M* 2.5M 154 336 44.1
Table 2. Effect of pretraining data on text-video retrieval for Ours VideoCCIM 970K 194 395 503

the MSR-VTT dataset. # Caps: Number of unique captions.

Training on VideoCC3M provides much better performance than
Howto100M, with a fraction of the dataset size (VideoCC3M has
only 970K captions and 6.3M clips compared to the 130M clips in
HowTo100M) . The performance boost is particularly large for the
zero-shot setting.

Table 3. Comparison to state-of-the-art results on MSR-VTT
1k-A split for text-to-video retrieval. Visual-Text PT: Visual-
text pretraining data. # Caps: Number of unique captions used
during pretraining. | These works use numerous experts, includ-
ing Object, Motion, Face, Scene, Speech, OCR and Sound classi-
fication features. { Pretrained on WebVid-2M, CC3M and COCO
datasets. *Numbers obtained from the authors.



Results - Video Captioning

Method PT Modality B-4 C M
o . . Zero-shot
¢ First results for zero-shot video Ours HowTol0OM  V 75 05 823
. . Ours VideoCC3M \' 13.23 8.24 11.34
captioning
X3 Outpe rforms HowTo100M by ala rge Table 4. Results on the MSR-VTT dataset for video captioning.
. Zero-shot results are obtained without any annotated video-text
ma rgln

data. Modalities: V: RGB frames. T: ASR in videos.

r’.
. a man is discussing the parts in an engine N this is about sports players making big plays during
GT: compartmentin a vehicle EIOLES R TIRUE I i S the game
. So I'm qoind to o ahead and remove this It's a great place to live and it's a great place to work. | don't know if you can see that but there's a little bit
HowTo100M: goingtog ve i of a gap in the middle of the field.
VideoCCIM: i e ey 67en ey mek clouds moving in the blue sky american football plags(;;;:?;fna touchdown against

Google Research



Results - Audio Retrieval

Model Pretraining Modality R@1 R@10
% No audio supervision used at all SOTA [ 7]t - A 243 721
% Pre-training on HowTo100M gives poor Ours - A 320 823
Ours HowTol1l00M A 33.7 83.2
zero-shot performance (speech) Ours VideoCC3M A 355 84.5
% Pre-training on VideoCC3M gives a boost Ours (Z3)  HowTol00M A 14 635
, , Ours (ZS)  VideoCC3M A 87 377
for both fine-tuning and zero-shot
. , SOTA [ ]t - A+V 281 79.0
« State of the art results on both AudioCaps Ours ] A+V 414 853
and CLOTHO Ours V%deoCC3M A+V 43.2 88.9
Ours (ZS)  VideoCC3M  A+V 106 452

“paby on a white blanket” “person performs live with “mirror image in a
blues artist at festival” stream”

Table 5. Results on the AudioCaps dataset for text-audio re-
trieval. § Higher than reported in the paper, as these are provided
by authors on our test set. Inputs refers to video inputs as follows:
A: Audio spectrograms V: RGB video frames. Rows highlighted
in light blue show Zero-shot (ZS) performance.

Google Research



AVATAR: Unconstrained
Audiovisual Speech Recognition O

Valentin Gabeur*, Paul Hongsuck Seo*, Arsha Nagrani*, Chen Sun, Karteek Alahari, Cordelia Schmid

Google Research




Goal - Robust ASR

% Visual context (AV-ASR) can help with speech recognition

« When audio is noisy, corrupted etc.

- o~ . 'sw ;
Audio
stream

AV-ASR

—p '

ext transcript
how did we get a disney princess egg in there

Google Research



Previous studies

Most AV-ASR works focus on using lip motion.
Fails

Speaker far away,
blurry

Egocentric viewpoints Face masks

Lip motion is an obvious cue, but visual frames can also contain objects, background info,
actions etc. that can help disambiguate

Google Research



AVATAR model and training

End-to-end trainable transformer with early
modality fusion

e Early RGB + spectrogram fusion in the encoder.
e Trained from pixels directly

I Output text
| this | dog | | [EOS] |
) )
> Decoder
7y
| [BOS] | | this | | dog |

Visual input Audio input

Novel training strategies based on word
masking

e Prevent the audio stream from dominating
training.

e Encourage the model to pay attention to the
visual stream.

Predict
Mask random word ‘egg’ unmasked

Did we get a disney princess ig&in there 4—| transcript
I sy Model

e t-o
e

Masked audio
with visual
inputs



Evaluation

We evaluate with both artificial and real noise

Artificial noise

o Burst packet loss: randomly mask a chunk of the audio signal

o Environment noise: add audio signals from AudioSet ‘noise’ category

Table 1: Audiovisual ASR vs Audio only models under various evaluation noise conditions (Clean, Burst, Environment and Mixed) and

with different training masking strategies (Random and Content). Percentage Word Error Rate (%WER) is reported on the How?2 test

set. A: Audio-only. A+V: Audiovisual. Rel. A: Relative improvement of A+V over A.

Eval Noise Clean Burst Loss Environment Noise Mixed Noise
Training A  A+V RelA A A+V Rel,A A A+V RelA A A+V Rel. A
No Pretraining 1572 1562 0.64% 29.59 28.69 3.05% 50.79 47.70 JGI08%M 60.51 57.49 [15:10%
Vanilla 9.75 979 -033% 2197 21.71 1.19% 2597 2555 1.61% 39.13 3896 0.42%
Random Word Masking 9.19 911 093% 1560 1528 2.05% 2339 2235 4.45% 32.43 30.64 5.50%
Content Word Masking 9.58 925 348% 1726 1692 198% 2377 22.67 4.65% 33.83 3226 4.53%
Conclusions:

e Vision helps in all cases

e Masking strategies during training improve performance



Evaluation

We evaluate with both artificial and real noise

e Real world noise: we create a new test set called VisSpeech

o Select challenging examples from YouTube where audio-ASR fails
o Different accents, background sounds etc

o Created from HowTo100M using a combination of automatic and manual

techniques
Obtain videos with Filter out cases where Compute visual-text Manually correct user
user-uploaded automatic ASR is similarity and filter by uploaded transcript
transcripts perfect thresholding

VisSpeech is available for download NOW at: https://gabeur.github.io/avatar-visspeech



Experimental Settings

HowTo100M
e Used for pretraining
e ~50M clips with their automatically-extracted speech transcriptions

How?2
e Most widely used benchmark for unconstrained AV-ASR
e Each clip is accompanied by a user-uploaded (noisy) transcript
e To evaluate the use of visual stream, simulated noise is injected
o  Burst packet loss. randomly mask a chunk of the audio signal
o  Environment noise. add audio signals from AudioSet
e Train/val/ test splits: 184,949 / 2,022 / 2,305 clips

VisSpeech
e 501 test examples in the wild with manually annotated transcripts.

Google Research



Quantitative Results

Table 2: Comparison to the state-of-the-art on How2. Our
model outperforms all previous works when trained from
scratch, and pretraining provides a significant boost. We report
the best audio-visual numbers for all works.

Model %WER
BAS [10] 18.0
VAT [11] 18.0
MultiRes [17] 20.5
LLD [13] 16.7
AVATAR (scratch) 15.6

AVATAR (pretrained) 9.1

Conclusions:
e Vision helps in all cases

Table 3: Results of AVATAR on our newly introduced test set Vis-
Speech consisting of real-world noise. The models are trained
on automatic ASR from HowTol00M, and finetuned on How?2.
Note here we do not add any artificial audio degradation at all.

Training Strategy A A+V  Rel. A
No pretraining 51.70 4973 = 3.81%
Vanilla 23.86 23.66 0.84%
Random Word Masking 22.13 21.08 | 4.78%
Content Word Masking  22.64 21.76 = 3.90%

e Masking strategies during training improve performance

Google Research



Qualitative Results on VisSpeech

Visual context helps with objects (‘eggplant’, ‘plane’)

Google Research


http://drive.google.com/file/d/1WQh_WgbUM_-pP-gYybeCWQz69LiCRQpF/view
http://drive.google.com/file/d/1foS8I9kl1yXEyT0xb-xpaKa93BuA5hpo/view

Qualitative Results on VisSpeech

Visual context helps with objects (‘dessert’, ‘shake’, ‘coin’)

Google Research


http://drive.google.com/file/d/1BX6AKMTB4QTgBWa_4GF95gF0IOUvQwif/view
http://drive.google.com/file/d/1gnKqqXqms3AY5BLF03e4nAQ4RMAq1Kf-/view
http://drive.google.com/file/d/1YLZFD4uBODxty6nHenro0taH7PJmO_-X/view

Some more applications of fusion
Egocentric action recognition

O

% Audio is particularly useful in
the egocentric (first person)
domain

% Microphone is close to the

person and may record

sounds that are outside the
view of the camera (eg.

‘eating’)

Same object - different

action — ‘wash steak’ vs ‘fry

steak’
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"With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition."
Kazakos, Evangelos, Jaesung Huh, Arsha Nagrani, Andrew Zisserman, and Dima Damen.

BMVC (2021).
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Some more applications of fusion
Recognising chimpanzee behaviours in the wild
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Useful for conservation

research

< Some actions like ‘nut
cracking’, ‘drumming’ have
distinct sounds

« Use an audio-visual CNN

based model

Automated audiovisual behavior recognition in wild primates

Max Bain, Arsha Nagrani , Daniel Schofield, Sophie Berdugo, Joana Bessa, Jake Owens, Kimberley J. Hockings, Tetsuro Matsuzawa, Misato Hayashi, Dora Biro, Susana
Carvalho, Andrew Zisserman

Science Advances, 2021


https://www.science.org/doi/10.1126/sciadv.abi4883

Google Research

Challenges

Different modalities learn at different rates
Different input representations
> Symbols, 1D waveform, 2D images, dense 3D point clouds
% Different noise topologies - how do we discard “irrelevant information?”
s Computational Complexity

K/ K/
%S 0%



% Our world is multimodal - it doesn’'t make sense to work with modalities in
isolation

% Multimodal machine learning is an exciting area to do research in

% Transformers are a great flexible architecture for multimodal machine learning,
can operate on any input that can be tokenized

% Audio can help action recognition and video retrieval

% Vision can be a an important cue for ASR

Thank you for listening! Questions?



