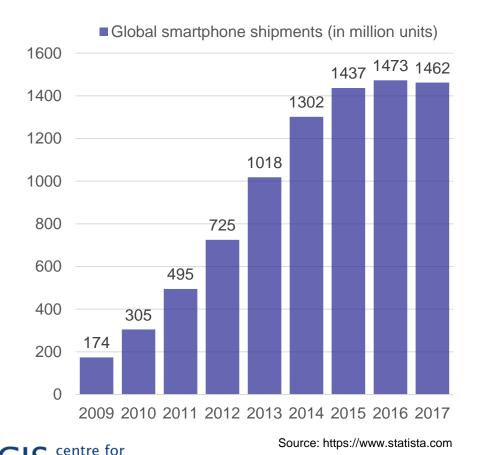
Learning deep sketch abstraction

<u>Umar Riaz Muhammad</u>, Yongxin Yang, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales

Published in: Conference on Computer Vision and Pattern Recognition (CVPR) 2018

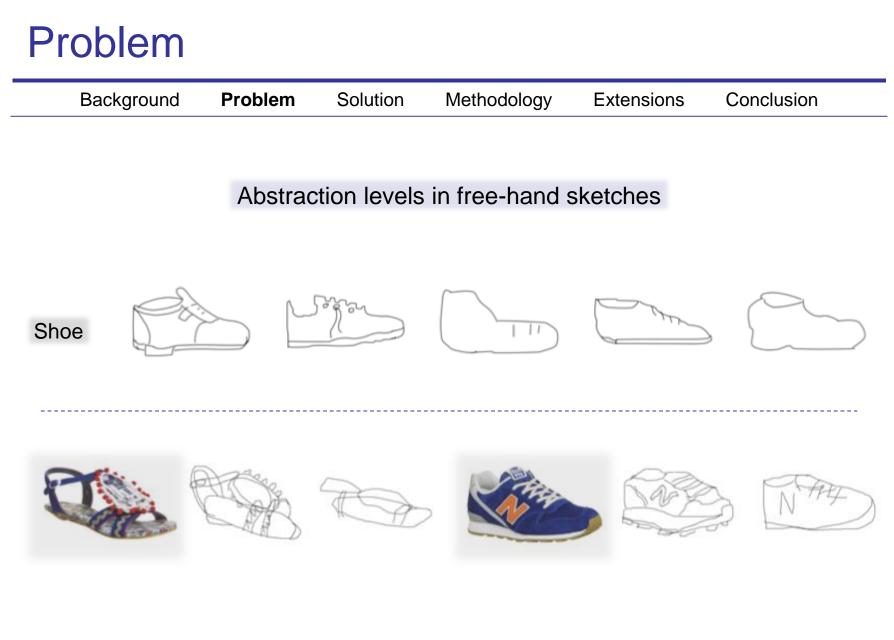
> Centre for Intelligent Sensing Queen Mary University of London



Background

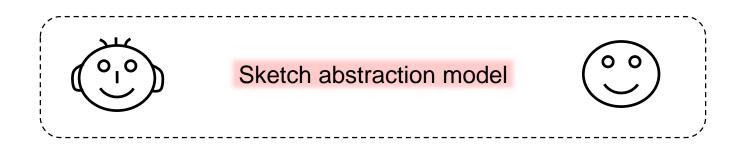
intelligent sensing

Background	Problem	Solution	Methodology	Extensions	Conclusion
Dackyrounu	FIODIEIII	Solution	Methodology	LAGUISIOUS	Conclusion


Proliferation of touch-screen devices

Sketch-related research

- Sketch recognition
- Sketch based image retrieval
- Forensic sketch analysis
- Sketch synthesis



Proposed solution

Background	Problem	Solution	Methodology	Extensions	Conclusion	
Daonground	1 10010111	ooranon	meaneasiegy		Conclusion	

Abstraction - a process of trade-off between recognizability and brevity

Synthesis at controllable abstraction levels

Stroke-level saliency

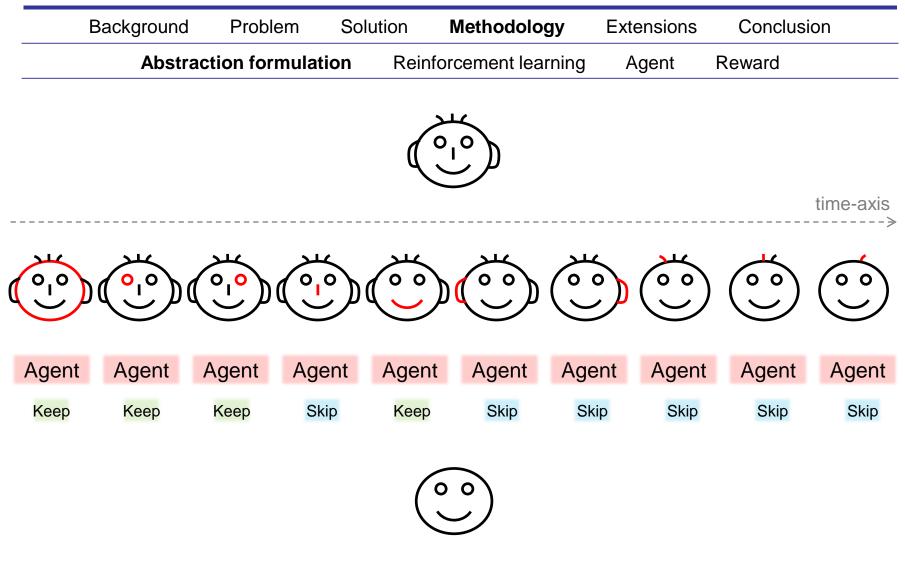
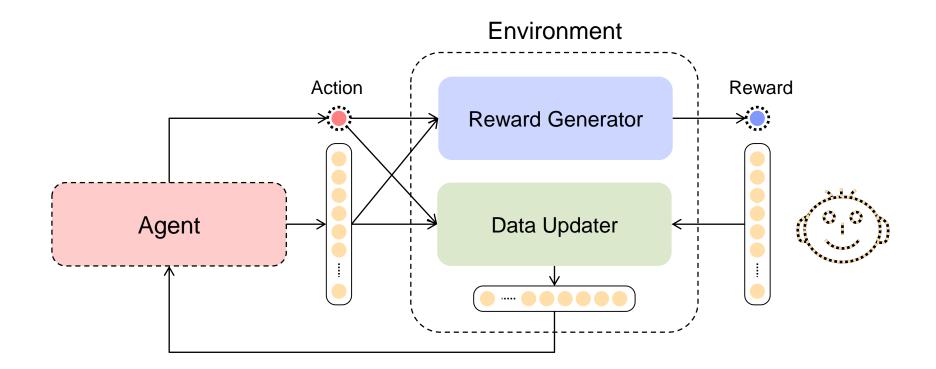
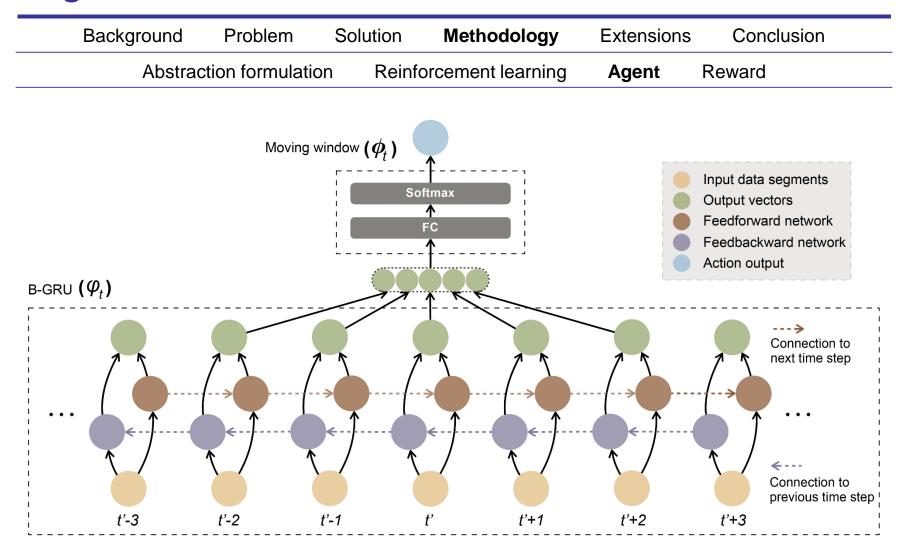

Fine-grained SBIR

Photo to sketch synthesis

Abstraction formulation



Reinforcement learning


Background	Problem	Solution	Methodology	Extensions	Conclusion
Abstract	ion formulatio	on Reinfo	prcement learning	Agent	Reward

Agent

CIS centre for intelligent sensing

Basic reward scheme

Background	Problem	Solution	Methodology	Extensions	s Conclusion
Abstrac	tion formulation	on Reinfor	rcement learning	Agent	Reward
	Basic rev	ward scheme	Ranked rewa	rd scheme	

$$R_t = b_t$$

$$b_t = \begin{cases} +1, & \text{if } t < M \text{ and } a_t = 0 \text{ (skip)} \\ -5, & \text{if } t < M \text{ and } a_t = 1 \text{ (keep)} \\ +100 & \text{if } t = M \text{ and } \text{Class}(s_t) = \text{G} \\ -100 & \text{if } t = M \text{ and } \text{Class}(s_t) \neq \text{G} \end{cases}$$

Ranked reward scheme

Background	Problem	Solution	Methodology	Extensions	s Conclusion
Abstrac	tion formulation	on Reinfo	rcement learning	Agent	Reward
	Basic rew	Ranked rewar	d scheme		

$$R_t = w_b \, b_t + w_r \, r_t$$

$$b_t = \begin{cases} +1, & \text{if } t < M \text{ and } a_t = 0 \text{ (skip)} \\ -5, & \text{if } t < M \text{ and } a_t = 1 \text{ (keep)} \\ +100 & \text{if } t = M \text{ and } \text{Class}(s_t) = \text{G} \\ -100 & \text{if } t = M \text{ and } \text{Class}(s_t) \neq \text{G} \end{cases}$$

$$r_t = \begin{cases} (w_c c_t + w_v v_t) b_t & \text{if } t < M \\ 0 & \text{if } t = M \end{cases}$$
$$c_t = 1 - \left(\frac{\mathbf{K} - C_t}{\mathbf{K}}\right)$$
$$v_t = 1 - \left(\frac{\mathbf{K} - (C_t - C_{t-1})}{2 \cdot \mathbf{K}}\right)$$

CIS centre for intelligent sensing

Backgrou	ind Problem	Solution	Methodology	Extensions	Conclusion	

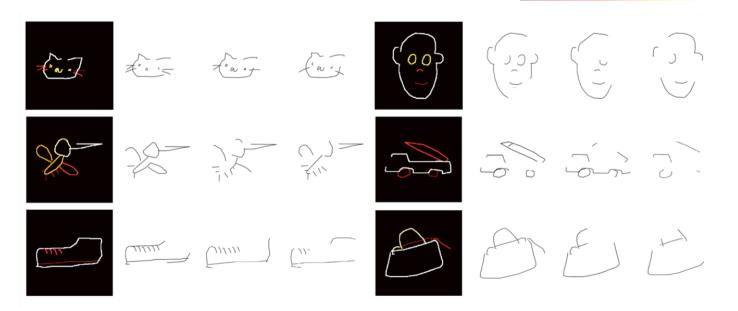
- Controlling abstraction level
- Sketch stroke saliency
- Category-level sketch synthesis
- Photo to sketch synthesis
- Fine-grained SBIR

Controlling abstraction levels

Background	Problem	Solution	Methodology	Extensions	Conclusion
Abstraction leve	Is Salienc	y Catego	ory synthesis	Photo-sketch synt	thesis SBIR

$$\phi_t^* = (\phi_t(a_t = 0) + \delta, \phi_t(a_t = 1) - \delta)$$

		#DataSegments	Accuracy
Full Sket	64.79	97.00%	
1st Level Abstraction	Baseline	51.00	85.00%
	Basic Reward	51.12	87.60%
$(\delta = -0.1)$	Ranked Reward	51.31	88.20 %
2nd Level Abstraction	Baseline	43.00	74.60%
	Basic Reward	43.09	78.80%
$(\delta = 0.0)$	Ranked Reward	43.33	80.80 %
3rd Level Abstraction	Baseline	39.00	64.20%
-	Basic Reward	39.37	68.00%
$(\delta = +0.1)$	Ranked Reward	39.48	70.40 %



Saliency

Background	Problem	Solution	Methodology	Extensions	Conclusion
Abstraction levels	s Saliency	Categor	y synthesis	Photo-sketch synth	esis SBIR

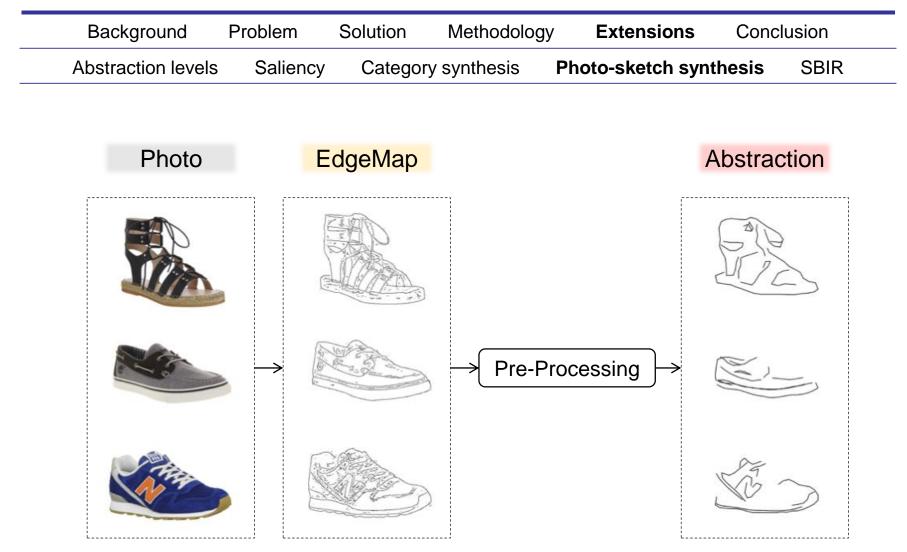
$$\mathbb{S}_{l} = \frac{\sum_{t=l_{min}}^{l_{max}} \phi_t(a_t = 1)}{l_{max} - l_{min}}$$

Low ← Saliency level → High

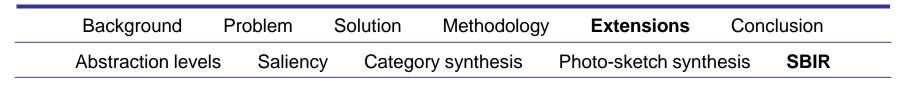
CIS centre for intelligent sensing

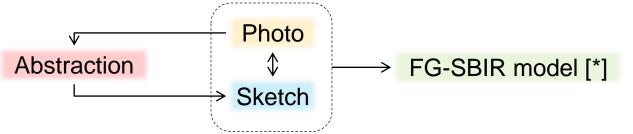
Category-level synthesis

Background	Problem	Solution	Methodology	Extensions	Conclusion
Abstraction levels	Saliency	Categor	y synthesis	Photo-sketch synt	hesis SBIR


Sketch synthesis [*] + Abstraction model

		#DataSegments	Accuracy
Full Sket	tch	69.61	99.6%
1st Level Abstraction	Baseline	50.00	89.96%
	Basic Reward	50.43	92.60%
$(\delta = -0.1)$	Ranked Reward	50.08	94.20 %
2nd Level Abstraction	Baseline	44.00	80.20%
	Basic Reward	44.13	88.40%
$(\delta = 0.0)$	Ranked Reward	44.32	90.80 %
3rd Level Abstraction	Baseline	37.00	69.20%
	Basic Reward	37.15	73.20%
$(\delta = +0.1)$	Ranked Reward	37.56	79.40 %


Photo to sketch synthesis



CIS centre for intelligent sensing

Fine-grained SBIR

	Shoe-V2		Chair-V2	
Method	Top1	Top10	Top1	Top10
Baseline1 [**]	8.86%	32.28%	31.27%	78.02%
Baseline2	16.67%	50.90%	34.67%	73.99%
Ours	21.17%	55.86%	41.80%	84.21%
Upper Bound	34.38%	79.43%	48.92%	90.71%

[*] Q.Yu,F.Liu,Y.-Z.SonG,T.Xiang,T.Hospedales,andC.C. Loy.

Scribbler: Controlling deep image synthesis with sketch and color. CVPR, 2017

Sketch me that shoe. In CVPR, 2016 [**] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays.

Conclusion

Background	Problem	Solution	Methodology	Extensions	Conclusion

Summary

- Sketch abstraction is studied for the first time.
- RL framework with a novel rank-reward to enforce stroke saliency.
- The model can address a number of sketch analysis tasks.

Future plans

- Make this model more practical by extending it to work with edgemaps in the wild.
- Develop an end-to-end trained abstraction model which could directly sample a variable abstraction-level sketch.

