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Problem
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Abstraction levels in free-hand sketches
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Proposed solution
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Abstraction - a process of trade-off between recognizability and brevity
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Synthesis at controllable abstraction levels
Stroke-level saliency Fine-grained SBIR

Photo to sketch synthesis
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Abstraction formulation
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Abstraction formulation Reinforcement learning Agent Reward
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Reinforcement learning
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Abstraction formulation Reinforcement learning Agent Reward
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Agent
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Abstraction formulation Reinforcement learning Agent Reward
Moving window (¢t )

Input data segments
Qutput vectors
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Basic reward scheme
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Abstraction formulation Reinforcement learning Agent Reward
Basic reward scheme Ranked reward scheme
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Ranked reward scheme
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Abstraction formulation Reinforcement learning Agent Reward
Basic reward scheme Ranked reward scheme
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Extensions

Background Problem Solution Methodology Extensions Conclusion

« Controlling abstraction level

« Sketch stroke saliency

« Category-level sketch synthesis
* Photo to sketch synthesis

* Fine-grained SBIR
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Controlling abstraction levels
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Conclusion

Abstraction levels Saliency

Category synthesis

Photo-sketch synthesis SBIR

¢; = (dt(ar = 0) + 9, ¢e(ar = 1) —6)

#DataSegments Accuracy
Full Sketch 64.79 97.00%
: Baseline 51.00 85.00%
Ist Lg‘i‘f’gtf)‘cmn Basic Reward 51.12 87.60%
- Ranked Reward 51.31 88.20%
: Baseline 43.00 74.60%
2nd Le(‘(’;d_Ag’;t)m“‘m Basic Reward 43.09 78.80%
e Ranked Reward 43.33 80.80%
: Baseline 39.00 64.20%
Srd Lz;’e_l ibOStI?"“O“ Basic Reward 39.37 68.00%
- Ranked Reward 39.48 70.40%
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Saliency
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Abstraction levels Saliency Category synthesis Photo-sketch synthesis SBIR
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Category-level synthesis
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Abstraction levels Saliency Category synthesis Photo-sketch synthesis SBIR

Sketch synthesis [*] +  Abstraction model

#DataSegments Accuracy

Full Sketch 69.61 99.6%
: Baseline 50.00 89.96%
Ist L?(‘S’elA_bgti‘;C“‘m Basic Reward 50.43 92.60%
- Ranked Reward 50.08 94.20%
: Baseline 44.00 80.20%
2nd Le(‘gel_Ag’%‘)racuon Basic Reward 44.13 88.40%
- Ranked Reward 44.32 90.80%
: Baseline 37.00 69.20%
3rd Lz;’e_l i‘gtﬁcuon Basic Reward 37.15 73.20%
T Ranked Reward 37.56 79.40%
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Photo to sketch synthesis
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Abstraction levels Saliency Category synthesis Photo-sketch synthesis SBIR

EdgeMap Abstraction
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Fine-grained SBIR

CIS
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Abstraction levels Saliency Category synthesis Photo-sketch synthesis SBIR
v Photo
Abstraction % FG-SBIR model [*]
| Sketch
Shoe-V2 Chair-V2
Method Topl Topl0 Topl Topl0
Baselinel [**] 8.86%  32.28% | 31.27% 78.02%
Baseline2 16.67% 50.90% | 34.67% 73.99%
Ours 21.17% 55.86% | 41.80% 84.21%
Upper Bound | 34.38% 79.43% | 48.92% 90.71%
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[*] Q.Yu,F.Liu,Y.-Z.SonG,T.Xiang, T.Hospedales,andC.C. Loy.

Sketch me that shoe. In CVPR, 2016

[**] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays.
Scribbler: Controlling deep image synthesis with sketch and color. CVPR, 2017
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Conclusion
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Summary

= Sketch abstraction is studied for the first time.
» RL framework with a novel rank-reward to enforce stroke saliency.
» The model can address a number of sketch analysis tasks.

Future plans

= Make this model more practical by extending it to work with edge-
maps in the wild.

= Develop an end-to-end trained abstraction model which could
directly sample a variable abstraction-level sketch.
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