Constrained optimisation for plane based stereo

Shahnawaz Ahmed, Miles Hansard, Andrea Cavallaro

Published in: IEEE Transactions on Image Processing, 2018

Centre for Intelligent Sensing Queen Mary University of London

Find depth of a scene

Stereo Vision

- Estimate depth using two views of the scene
 - Cameras are separated by a horizontal shift

Left image

Right image

Disparity

- Horizontal difference between corresponding pixels
- Disparity space (x, y, d)
 - (x, y) : pixel position
 - d : disparity
- Disparity is inversely proportional to depth

CIS centre for Stereo matching intelligent sensing

Challenges

Photometric Variations

Specularities

Lens distortion

Occlusion

Image Sensor Noise

Textureless Regions

Reflections

•

• Transparency

 Foreshortening and the Uniqueness Constraint

 Repetitive Structures and Textures

Limitations of Stereo Matching

- Assumes all pixels within a patch have constant disparity
 - Assumption does not hold in real world scenarios
 - Consequence: Jump in disparity map (staircase effect)

Ground truth

Staircase effect

PatchMatch Stereo Framework^[1]

- Estimates disparity from planes fitted to each pixel
 - Disparity of a pixel
 - Distance to the plane
 - Disparity space is over-parametrised
 - Three plane parameters
 - Large number of random sampling
 - Some good initial plane estimates are expected
- Propagate planes within and across images
 - Neighbouring pixels have coherent matches

Plane association with pixels

Z,'

D intelligent sensing

[1] M. Bleyer, C. Rhemann, and C. Rother. PatchMatch Stereo - Stereo Matching with Slanted Support Windows. In Proc. of BMVC. 2011.

Initialised PatchMatch Stereo

- Primary limitation of PatchMatch Stereo
 - Feasible plane generation not guaranteed during initialisation
- Solution
 - Initialised PatchMatch Stereo (proposed)
 - Uses two geometric constraints to initialise the planes

Initialised PatchMatch Stereo

- Constraint I : Visibility constraint in the disparity space
 - Line of sight vector
 - Vector joining image points and corresponding disparity point
 - Plane should be visible from both line of sight vectors

CIS centre for intelligent sensing

I, *I'*: left, right image $\bar{\mathbf{p}}, \bar{\mathbf{p}}'$: left, right image point $\mathcal{W}(\bar{\mathbf{p}}), \mathcal{W}(\bar{\mathbf{p}}')$: left, right support window ℓ, ℓ' : left, right "line of sight" vector $\mathcal{D}, \mathcal{D}'$: left, right disparity space \mathbf{p}, \mathbf{p}' : corr. point in the left, right disparity space π, π' : left, right disparity plane

Initialised PatchMatch Stereo

- Constraint II : Disparity Bound Constraint on Support Window
 - Disparity of every pixel inside the support window
 - Lies between allowed disparity limit

CIS centre for intelligent sensing *I*, *I'*: left, right image $\bar{\mathbf{p}}, \bar{\mathbf{p}}'$: left, right image point $\mathcal{W}(\bar{\mathbf{p}}), \mathcal{W}(\bar{\mathbf{p}}')$: left, right support window ℓ, ℓ' : left, right "line of sight" vector $\mathcal{D}, \mathcal{D}'$: left, right disparity space \mathbf{p}, \mathbf{p}' : corr. point in the left, right disparity space π, π' : left, right disparity plane

Results (Disparity Map)

Initialised PatchMatch Stereo

S centre for

intelligent sensing

CNN [2]

[2] J. Zbontar and Y. LeCun. PatchMatch Stereo - Stereo Matching by training a convolutional neural network to compare image patches. CoRR, Oct. 2015

Results (Plane Normal Map)

CIS centre for intelligent sensing Initialised PatchMatch Stereo

Disparity Map of a Subset of Middlebury Dataset

Queen Mary

PMS vs IPMS Error Comparison

Iterations

Limitations

- High computation time
 - 234 mins (900px*750px)
 - Window size (41px*41px)
- Noisy disparity map
 - Repetitive patterns
 - Low texture regions

Occlusion

Initialised PatchMatch Stereo

Conclusions

- Introduced a constrained initialisation scheme for plane parameters for PatchMatch Stereo framework
 - Geometrically feasible planes are associated with every pixel
- Converges in two iteration
- Future work
 - Extend the planar model to a quadric

