Video summarisation by classification with deep reinforcement learning

Kaiyang Zhou, Tao Xiang, Andrea Cavallaro

Published in: British Machine Vision Conference (BMVC) 2018

Centre for Intelligent Sensing Queen Mary University of London

What is video summarisation?

Goal: to automatically summarize videos into keyframes or key-clips.

We want summaries to be:

- informative
- content-specific

Current video summarisation methods

Unsupervised methods use generic criteria e.g. diversity, representativeness.

- 1. Feature extraction
- 2. Clustering

3. Keyframes extraction

Limitations: generic criteria cannot capture content-specific concepts.

Current video summarisation methods

Supervised methods rely on manual annotations.

e.g. scores:
$$y = \{0.1, 0.8, 1.0, 0.2, ...\}$$

Limitations: labels are costly to collect and prone to be biased.

Our idea: weakly supervised + RL

1. Video-level category labels are descriptive of video content and very easy to obtain.

2. To train a summarisation model by encouraging it to produce summaries maintaining category-related information.

Framework overview

Network architectures

Classification network

Summarisation network

Sequential decision making process

$$t = 1$$

$$s_{1} = \{\underline{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}}\}$$

$$s_{1} \rightarrow \boxed{\text{Model}} \rightarrow Q(s_{1}, a_{1}) \in \mathbb{R}^{2}$$
if $Q(s_{1}, a_{1} = 1) > Q(s_{1}, a_{1} = 0)$: # epsilon-greedy is used in practice

$$s_{2} = \{x_{1}, \underline{x_{2}}, x_{3}, x_{4}, x_{5}\} \# x_{1} \text{ is removed}$$
else:

$$s_{2} = \{\underline{x_{2}}, x_{3}, x_{4}, x_{5}\} \# x_{1} \text{ is removed}$$

$$r_{1} = \mathcal{R}(r_{1}|s_{1}, a_{1}, s_{2})$$

$$t = 2$$

$$s_{2} \rightarrow \boxed{\text{Model}} \rightarrow Q(s_{2}, a_{2}) \in \mathbb{R}^{2}$$

$$\vdots$$

$$r_{2} = \mathcal{R}(r_{2}|s_{2}, a_{2}, s_{3})$$

$$\vdots$$

$$\lim_{util t} t = T \text{ or } |s_{t}| < \tau$$

$$\bigcup_{util tigent sensing} \qquad \bigcup_{util tigent sensing} \qquad \bigcup_{util$$

Reward functions

1. Global recognisability reward r_t^g

 $r_t^g = \begin{cases} +1, & \text{if } \hat{y} = y, & \text{\# summary can be recognised by the expert} \\ -5, & \text{else.} \end{cases}$

2. Local relative importance reward r_t^l

$$r_t^l = \tanh(\frac{\hat{y}^*(s_t) - \hat{y}^*(s_{t+1})}{\eta}) + 0.05(1 - a_t)$$

where \hat{y}^* means rank of true category

3. Unsupervised reward r_t^u

$$r_t^u = \frac{1}{|\mathcal{Y}||\mathcal{Y}-1|} \sum_{t \in |\mathcal{Y}|} \sum_{\substack{t' \in |\mathcal{Y}| \\ t' \neq t}} d(x_t, x_{t'}) + \exp\left(-\frac{1}{\mathcal{T}} \sum_{\substack{t=1 \\ t' \in \mathcal{Y}}} \min_{\substack{t' \in \mathcal{Y} \\ \text{reconstruction error}}} ||x_t - x_{t'}||_2\right)$$

dissimilarity among selected frames

Optimisation with double Q-learning

1. sample experience $e_t = (s_t, a_t, s_{t+1})$ from replay memory \mathcal{M}

2.
$$L = \mathbb{E}_{\{e_t\} \sim \mathcal{M}}[(R_t - Q_\theta(s_t, a_t))^2]$$

s.t. $R_t = r_t + \gamma Q_{\theta^-}(s_{t+1}, \arg\max_{a_{t+1}} Q_\theta(s_{t+1}, a_{t+1}))$

3. update model with gradient descent $\theta = \theta - \alpha \nabla_{\theta} L$

Evaluation: datasets

	Dataset	# videos	Ler	ngth (mins)	# categories	5
	TVSum	50		2-10	10	
	CoSum	51		1-12	10	
1	Changing Vehicle Tire (VT)			11	Base Jumping (BJ)	
2	Getting Vehicle Unstuck (VU)			12	Bike Polo (BP)	
3	Grooming an Animal (GA)			13	Eiffel Tower (ET)	
4	Making Sandwich (MS)		14	Excavator River Crossing (ERC		
5	Parkour (PK)		15	Kids Playing in Leaves (KID)		
6	Parade (PR)		16	MLB (MLB)		
7	Fla	ash Mob Gatering (F	M)	17	NFL (NFL)	
8		BeeKeeping (BK)		18	Notre Dame Cathedral (NDC)	
9	Atte	empting Bike Tricks	(BT)	19	Statue of Liberty (SL)	
10		Dog Show (DS)		20	Surfing (SURF)	

Categories of TVSum

Categories of CoSum

Evaluation: metrics

$F\text{-score} = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$

Quantitative results

Method	Label	TVSum	CoSum
Uniform sampling	×	15.5	20.4
K-medoids	×	28.8	34.3
Dictionary selection []	×	42.0	37.2
Online sparse coding [×	46.0	-
Co-archetypal [28]	×	50.0	-
GAN [×	51.7	44.0
DR-DSN [×	57.6	47.8
LSTM [frame-level	54.2	46.5
GAN [frame-level	56.3	50.2
DR-DSN [frame-level	58.1	54.3
Backprop-Grad [2]	video-level	52.7	46.2
$DQSN(r^g)$	video-level	57.9	50.1
DQSN $(r^g + r^u)$	video-level	58.1	51.7
DQSN $(r^g + r^l)$	video-level	58.2	52.0
DQSN (full model)	video-level	58.6	52.1

Table 1: Summarisation results (%) on TVSum and CoSum. $1^{st}/2^{nd}$ best in red/blue. Full model means $r^g + r^l + r^u$.

Analysis of local relative importance reward

Figure 3: Example frames that downgraded (red) / improved (green) the rank of true category in classification when being removed.

Thanks! Any questions?

Paper link: https://arxiv.org/abs/1807.03089

