Using machine learning to listen out for birds

Dan Stowell

Machine Listening Lab Centre for Digital Music School of Elec Eng & Computer Science Queen Mary University of London

The Machine Listening Lab

machine-listening.eecs.gmul.ac.uk

In the Machine Listening Lab we develop methods for making sense of natural sounds, everyday sounds, and recorded music. *Machine listening* is the use of signal processing and machine learning to extract useful information from sound.

Applications

Warblr -Automatic bird species recognition in the palm of your hand The first ever computergenerated musical

desire Heren

Automatic music transcription systems

Lead academics

Dan Stowell

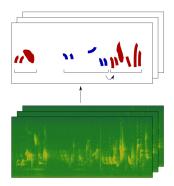
Emmanouil Benetos

Sebastian Ewert

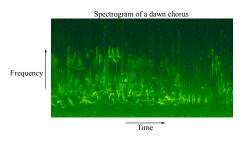
My work: bird sounds

5-year EPSRC Fellowship project:

"Structured machine listening for soundscapes with multiple birds"



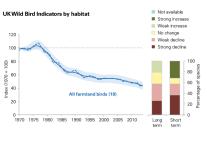
Can we decode the dawn chorus?

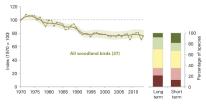


- Which species?
- How many birds?
- Singing in response to neighbours?
- Warning about predators?
- Defending a territory, or newly arrived?

Many questions could be answered with the help of modern machine learning and signal processing

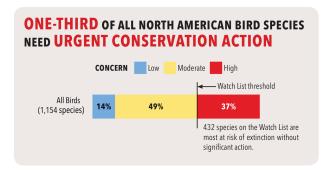
Machine listening and bird sounds - why?





Machine listening and bird sounds - why?

Machine listening and bird sounds - why?



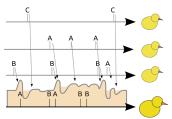
Opportunities for us:

- ▶ Audio is the best medium for bird monitoring
- ▶ Bioacoustic monitoring has truly entered its big data era

Sound & machine learning Bird species classification Generalising well: bird detection Low-resource tasks

And there's much more we can do, beyond monitoring...

Postcard 1: bird communication networks



Collab with Clayton lab (QMUL) and MPIO Stowell et al. (2016) **Royal Soc Interface**

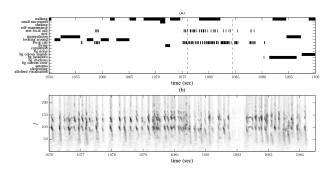
Understanding daily behaviour of birds in the wild

Collab with Lisa Gill, MPIO Stowell et al. (2017) **IEEE Trans ASLP**

Understanding daily behaviour of birds in the wild

Collab with Lisa Gill, MPIO Stowell et al. (2017) **IEEE Trans ASLP**

Understanding daily behaviour of birds in the wild

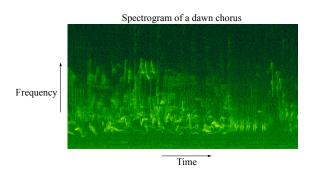


Collab with Lisa Gill, MPIO Stowell et al. (2017) **IEEE Trans ASLP**

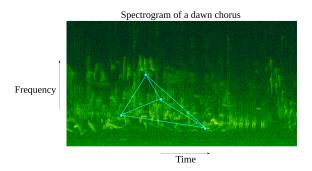
[video]

In this talk...

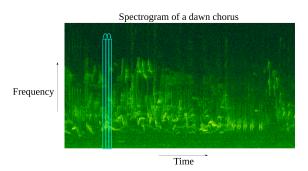
- ► Applying machine learning to sound signals state of the art
- Customising the methods for bird sound characteristics
- Machine learning that generalises well
- Working with limited datasets
- Pictures of birds



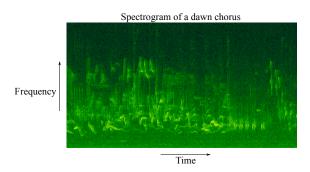
Fingerprinting? ('Shazam')



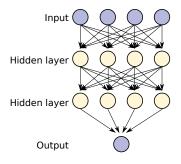
Speech recognition methods? Hidden Markov model (HMM)



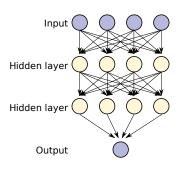
Deep learning?

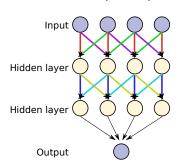


Neural nets, versus convolutional neural nets (CNN)



Neural nets, versus convolutional neural nets (CNN)

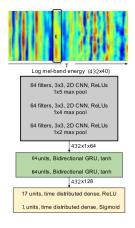




Shared weights among neurons

- ightharpoonup Dramatically fewer free parameters ightarrow easier to train
- Shift-invariance built in
- ► Locality built in

Convolutional **and** recurrent neural nets ('CRNN')



e.g. Cakir et al (2018); Morfi & Stowell (2018)

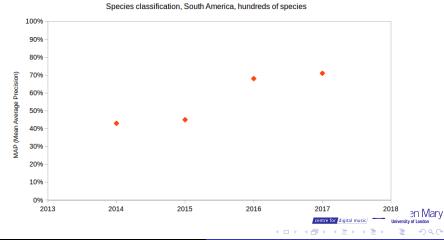
Bird species classification

Automatic classification of bird species

- Useful for monitoring, research, archive management
 - → but only if it works in realistic conditions: noisy, and many possible species (> 200 singing birds in UK, > 400 in Brazil)

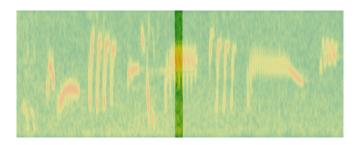
Bird species classification

Winning system in BirdCLEF



Feature choice

Our input data: "slices" from spectrograms (e.g. 4 frames, approx 50 ms)



Stowell & Plumbley, PeerJ 2014

Feature learning

A selection of items from the 'dictionary' (learnt from Brazil birdsong, 77.8 hours):

Stowell & Plumbley, PeerJ 2014

Bird species classification: Warblr

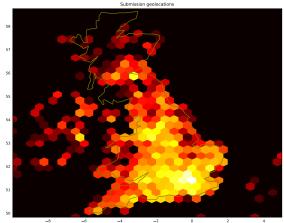
'Warblr' app – for Android and iOS

Bird species classification: Warblr

'Warblr' app - for Android and iOS

Warblr: who are our users?

5,000+ paying users since August 2015 Over 45,000 recordings submitted to our database ($\approx 80/\text{day})$



Some of our users...

Some of our users...

Detection – a missing link in the chain?

Many projects need reliable *detection* of bird sounds e.g. in long unattended recordings

Detection of bird sounds not the same as classification

...easier? harder?

Bird Audio Detection challenge

We designed the **Bird Audio Detection challenge**

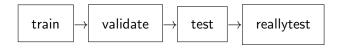
Dev set 1: 10k items, crowdsourced audio from around the UK (Warblr phone app)

Dev set 2: 7k items, crowdsourced audio from misc field recordings

Testing set: 10k items, remote monitoring, Chernobyl Exclusion Zone

Machine learning workflow

Machine learning workflow



Bird Audio Detection challenge: outcomes

- 30 teams submitted
- Strong results (up to 89% AUC)

User	Preview Score all	Final Score ili	Classifier	Domain adaptation	Ensembling
bulbul	88.9 %	88.7 %	CNN	Pseudo-labelling	Model averaging
cakir	88.3 %	88.5 %	CRNN	no	no (for strongest submission); Model avera
topel	88.8 %	88.2 %	CNN-DenseNet	Pseudo-labelling	Multi-epoch, Model averaging(geom)
MarioElias	88.5 %	88.1 %	CNN,	по	Model averaging (over 2 diverse methods)
			ExtraTreesRegressor		(over 2 diverse methods)
adavanne	88.2 %	88.1 %	CRNN	Test mixing	no

- CNN vs CRNN
- Domain adaptation strategies
 - Pseudo-labelling, test mixing
 - Though not always needed

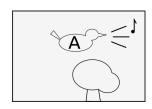
Low-resource tasks

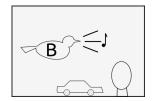
- "Bird detection" addressable as a big data situation (2 classes, 10000s of items for each)
- what about tasks with much less available data?
 - 1. Identifying individual birds
 - 2. Transcribing sound scenes in detail

Identifying individual bird ID

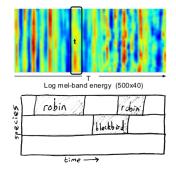
Motivation: reduce intrusive monitoring (capturing/tagging/ringing)

Many birds do have individual signature





"Automatic wildlife transcription"



A bit like "automatic music transcription" or "speech diarisation"

- Much more variability (templates / HMM are of limited use)
- ▶ V difficult to collect training annotations covering all sounds
- Many sounds are inherently rare

"Weakly-labelled" learning

Training data:

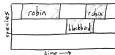
But we want:

How to train?

"Weakly-labelled" learning

Training data:

But we want:



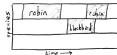
How to train?

► False strong labelling

"Weakly-labelled" learning

Training data:

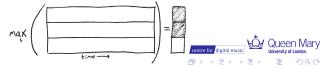
But we want:



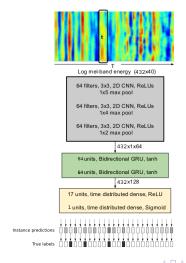
How to train?

► False strong labelling

'Multi-instance learning' target:

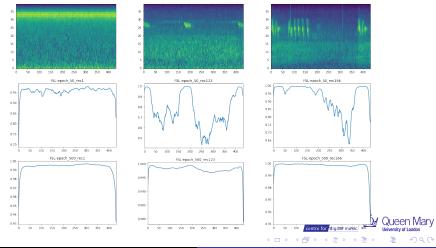


Convolutional recurrent neural network (CRNN)



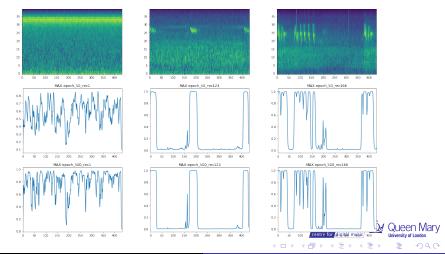
Weakly-labelled learning: results

Trained with "false strong labelling":



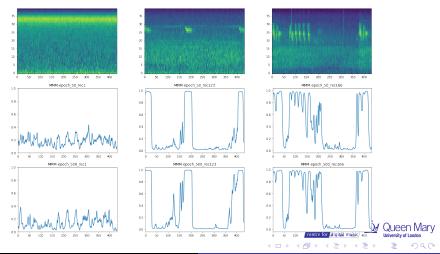
Weakly-labelled learning: results

Trained with multi-instance (max) objective:



Weakly-labelled learning: results

Trained with improved multi-instance objective:



Weakly-labelled learning

"Deep Learning for Audio Event Detection and Tagging on Low-Resource Datasets" Morfi & Stowell (2018) **Applied Sciences**, 8(8), 1397; https://doi.org/10.3390/app8081397

Veronica Morfi (PhD student, 3rd year)

Putting it all together

Putting it all together

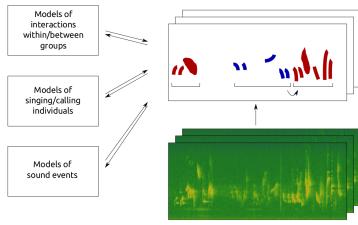
- Large-scale tasks
 - Bird detection
 - Bird species classification

Achievable, but care needed—generalisation

- ▶ They feed into more fine-grained analysis
 - Identifying individuals
 - Transcription of sound scenes

Care needed—choice of features, constraining the problem

Putting it all together



Conclusions

- Audio analysis
 - Many interesting open problems
 - Good examples of time series for machine learning development
- Bird sound analysis—useful and fascinating
 - ▶ Monitoring birds in the wild
 - Understanding animal behaviour
 - Comparative linguistics
 - Challenges to overcome: Limited data, unlabelled data, unknown information content

mcld.co.uk/research

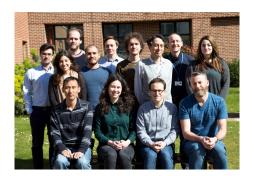
Conclusions

- Audio analysis
 - Many interesting open problems
 - Good examples of time series for machine learning development
- Bird sound analysis—useful and fascinating
 - Monitoring birds in the wild
 - Understanding animal behaviour
 - Comparative linguistics
 - Challenges to overcome: Limited data, unlabelled data, unknown information content

mcld.co.uk/research

Thanks

Machine Listening Lab



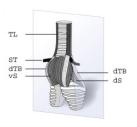
machine-listening.eecs.qmul.ac.uk

Thank you to: my collaborators, EPSRC for funding

extra slides

Collab with Lisa Gill, MPIO Stowell et al. (2016), Proc InterSpeech

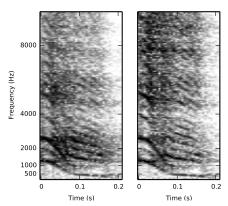
Source-filter model of vocal production



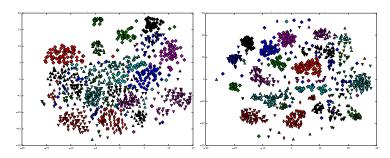
Songbird syrinx (Riede & Goller 2010)

(NB sound propagation through environment)

LPC preprocessing before/after:



LPC preprocessing before/after:



t-SNE distance plots (each point is one call; marker style indicates individual)

