Learning to generalize: meta-learning for domain generalization

Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales

Published in: Association for the Advancement of Artificial Intelligence (AAAI) 2018

> Centre for Intelligent Sensing Queen Mary University of London

- *What* is domain generalization?
 - Domain generalization (DG) assumes a model is trained from multiple observed (source) domains while it is expected to perform well on any unseen (target) domains.

- *What* is domain generalization?
 - Domain generalization (DG) assumes a model is trained from multiple observed (source) domains while it is expected to perform well on any unseen (target) domains.

- *What* is domain generalization?
 - Domain generalization (DG) assumes a model is trained from multiple observed (source) domains while it is expected to perform well on any unseen (target) domains.

- *Why* DG is useful?
 - Data distribution shift could not be avoided, DG helps to solve this problem.

- *Why* DG is useful?
 - Data distribution shift could not be avoided, DG helps to solve this problem.
 - For the data (domain) of interest, but with too sparse data to train a good model, eg, Sketch. DG helps to train the model from the domain with large scale data, eg, Photo.

- *How* to reach DG?
 - Domain invariant feature learning.
 - [Muandet et al, ICML'13] ~Kernel

- *How* to reach DG?
 - Domain invariant feature learning.
 - [Muandet et al, ICML'13] ~Kernel
 - [Ghifary et al, ICCV'15; Li et al, CVPR'18] ~Auto encoder

- *How* to reach DG?
 - Domain invariant feature learning.
 - [Muandet et al, ICML'13] ~*Kernel*
 - [Ghifary et al, ICCV'15; Li et al, CVPR'18] ~Auto encoder
 - Agnostic domain learning. [Li et al, ICCV'17] ~CNN

- *How* to reach DG?
 - Domain invariant feature learning.
 - [Muandet et al, ICML'13] ~*Kernel*
 - [Ghifary et al, ICCV'15; Li et al, CVPR'18] ~Auto encoder
 - Agnostic domain learning. [Li et al, ICCV'17] ~CNN
 - Data augmentation. [Shankar et al, ICLR'18] ~ Bayesian Network

Learning to Generalize

• Conventional methods.

Learning to Generalize

• MLDG method.

• Meta-learning DG in supervised learning scenario.

Algorithm 1 Meta-Learning Domain Generalization 1: procedure MLDG **Input**: Domains S2: 3: **Init**: Model parameters Θ . Hyperparameters α, β, γ . for ite in iterations do 4: **Split**: \overline{S} and $\breve{S} \leftarrow S$ 5: **Meta-train**: Gradients $\nabla_{\Theta} = \mathcal{F}'_{\Theta}(\bar{\mathcal{S}}; \Theta)$ 6: Updated parameters $\Theta' = \Theta - \alpha \nabla_{\Theta}$ 7: **Meta-test**: Loss is $\mathcal{G}(\breve{S}; \Theta')$. 8: **Meta-optimization**: Update Θ 9: $\Theta = \Theta - \gamma \frac{\partial (\mathcal{F}(\bar{\mathcal{S}}; \Theta) + \beta \mathcal{G}(\breve{\mathcal{S}}; \Theta - \alpha \nabla_{\Theta}))}{\partial \Theta}$ 10: end for 11: end procedure

Supervised Learning – Synthetic experiment

Supervised Learning – PACS

	D-MTAE (Ghifary et al. 2015)	Deep-all	DSN (Bousmalis et al. 2016)	AlexNet+TF (Li et al. 2017)	MLDG (CNN)
art_painting	60.27	64.91	61.13	62.86	66.23
cartoon	58.65	64.28	66.54	66.97	66.88
photo	91.12	86.67	83.25	89.50	88.00
sketch	47.86	53.08	58.58	57.51	58.96
Ave.	64.48	67.24	67.37	69.21	70.01

https://domaingeneralization.github.io

Gradients Alignment

Test performance curve

CIS centre for intelligent sensing

CIS centre for intelligent sensing

Reinforcement Learning – Cart pole

Method	RL-Random-Source	RL-All	RL-Undobias
Return	133.74 ± 6.79	97.39 ± 73.49	113.52 ± 11.65
Method	RL-MLDG	RL-MLDG-GC	RL-MLDG-GN
Return	165.34 ± 3.38	129.56 ± 2.51	175.25 ± 3.16

Across pole length. Return: reward score (upper bound=200)

Reinforcement Learning – Cart pole

Method	RL-Random-Source	RL-All	RL-Undobias
Return	98.22 ± 20.35	144.21 ± 9.23	150.46 ± 17.59
Method	RL-MLDG	RL-MLDG-GC	RL-MLDG-GN
Return	170.81 ± 9.90	147.76 ± 4.41	164.97 ± 8.45

Across pole length and cart mass. Return: reward score (upper bound=200)

Reinforcement Learning – Mountain car

Mountain Car	RL-Random-Source	RL-All	RL-Undobias
Avg. F Rate	0.55 ± 0.07	0.05 ± 0.02	0.08 ± 0.04
Avg. Return	-191.07 ± 3.01	-141.35 ± 2.64	-124.48 ± 3.22
Mountain Car	RL-MLDG	RL-MLDG-GC	RL-MLDG-GN
Avg. F Rate	0.05 ± 0.02	0.0 ± 0.0	1.0 ± 0.0
Avg. Return	-125.73 ± 2.76	-311.80 ± 3.92	-

Across mountain height. Return: negative reward score

Thank you!

