Background light estimation for depth-dependent underwater image restoration

Chau Yi Li and Andrea Cavallaro

Published in: IEEE International Conference on Image Processing (ICIP) 2018

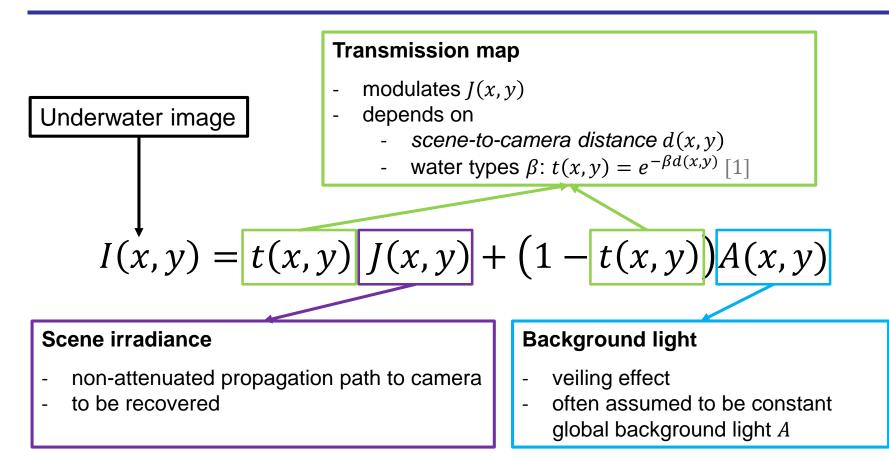
> Centre for Intelligent Sensing Queen Mary University of London

Underwater image degradation

- By light attenuation in water
 - Absorption
 - \rightarrow reduced intensity
 - Scattering
 - \rightarrow blurred image
- Wavelength-dependent
 - More observable for red light in open ocean water
 - \rightarrow blue/ green colour cast

Light attenuation

- Quantified by attenuation coefficient β
- Dependent on the distance travelled d
- Follows Beer-Lambert Law [1]


portion of remaining intensity = $e^{-\beta d}$

[1] Swinehart, "The beer-lambert law," J. Chem. Educ., 1962.

Image formation model [2]

[1] Swinehart, "The beer-lambert law," J. Chem. Educ., 1962.

[2] Schechner and Karpel, "Clear underwater vision," in CVPR, 2004.

Recovering J(x, y)

 Remove the effect of degradation along scene-tocamera distance

$$J(x,y) = \frac{I(x,y) - A(x,y)}{t(x,y)} + A(x,y)$$

- Requires estimation of t(x, y) and A(x, y)
- Restored image
 - As if taken directly in front of camera
 - No change to water colour

Constraints for A estimation

- Selected from water region
 - Blue or green colour \rightarrow ratio constraint
 - Flat region \rightarrow variance constraint
- Ratio constraint pixel-wise

$$- : \beta^g < \beta^r$$
 and $\beta^b < \beta^r$

- From [3]
$$\frac{\beta^c}{\beta^r} = \frac{b^c A^r}{b^r A^c} < 1$$

-
$$A^r < 0.9109 A^g$$
 and $A^r < 0.9109 A^b$

- variance constraint patch-wise
 - V(x, y) : variance of patch centred at pixel (x, y)
 - $V(x,y) < \zeta^2$

[3] Zhao et. al, "Deriving inherent optical properties from background color and underwater image enhancement," in J. Ocean Eng., 2015.

Example of constraint candidates for A

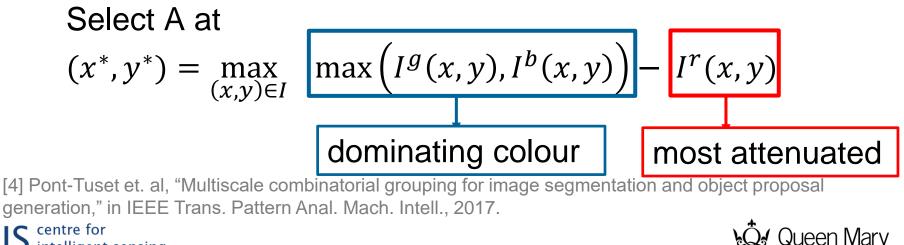
I(x, y)

ratio constraint candidates

variance constraint candidates

Combining constraints for A

Candidate region: region proposals [4] with >50% fulfilling both constraints



candidate regions

University of London

■ID intelligent sensing

More about A(x, y)

- Not constant for
 - Water types with large β
 - Capturing large vertical depth
 - Taken near water surface
- Incorrect estimation \rightarrow distorted water colour

I(x, y)

J(x, y) with constant A

A(x, y) estimation

- Unknown β and depth range
 - Assumed to be known in [5]
 - Information not always available
- Proposed method:
 estimate change in A(x, y) without additional information

[5] J. Chiang, Y. Chen, and Y. Chen, "Underwater image enhancement: Using wavelength compensation and image dehazing," in IEEE TIP, 2012.

A(x, y) estimation - proposed

- $\hat{\beta}$: attenuation coefficient *per pixel distance* for water
- A₀ : intensity at top of image
- For each pixel at pixel distance D(x, y) from top: $A(x, y) = A_0 e^{-\widehat{\beta}D(x, y)}$

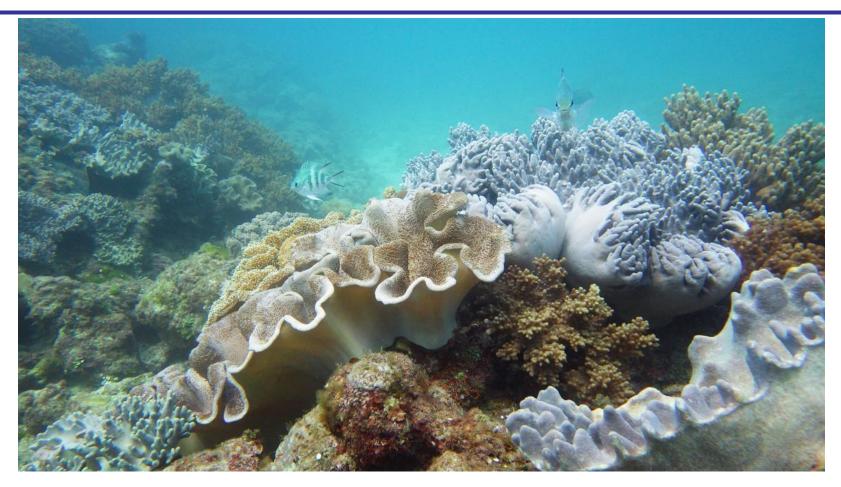
$$\ln A(x, y) = \ln A_0 - \hat{\beta} D(x, y)$$

Linear regression to obtain A_0 and $\hat{\beta}$

A(x, y) estimation - proposed

- Linear regression with L_1 error
- From the connected component containing A
- Interpolate using $\hat{\beta}$ to obtain A(x, y)
 - $\hat{\beta} = 0$ reduces A(x, y) to A

J(x, y) with constant A


J(x, y) with A(x, y)


I(x, y)

J(x,y)

I(x, y)

J(x,y)

I(x, y)

J(x,y)

Evaluation

- No ground truth available
- Compared with 4 restoration methods on 60 images
- Quantitative

ligent sensing

- Preservation of water colour
- Water region segmented manually with [6]
- Quantified by MSE and PSNR
- Subjective experiment
 - Online evaluation form
 - 'select the most attractive image' out of original and 5 methods
 - Each image evaluated 20.25 times

[6] Russell et. al "LabelMe: a database and web-based tool for image annotation," Int. J. Comput. Vis., 2008.

	Org.	DCP	ARC	WCID	BLA	Pro
$MSE_c \downarrow$	N/A	.0440	.0156	.0190	.0112	.0014
$PSNR_l \uparrow$	N/A	21.5	25.2	27.9	29.3	37.0
avg (%) ↑	9.9	15.8	9.5	16.9	30.9	16.9
						1 1

- Lowest error for water colour preservation
- Subjective evaluation result
 - Underperform to method with contrast adjustment (BLA [7])
 - Design of evaluation

[7] Peng and Cosman, "Underwater image restoration based on image blurriness and light absorption," in IEEE Trans. Image Process., 2017.

Limitation

- Limited improvement over images of small red intensity
- Does not account for degradation along vertical depth

I(x, y)

J(x,y)

We proposed:

- Physical model based selection of A
- Estimation of A(x, y) without prior knowledge of the scene

Future work:

 Compensation for degradation introduced by vertical depth

