Multi-camera matching of spatio-temporal binary features

<u>Alessio Xompero¹</u>, Oswald Lanz², Andrea Cavallaro¹

Published in: Conference on Information Fusion 2018

Centre for Intelligent Sensing Queen Mary University of London

Queen Mary University of London¹ Fondazione Bruno Kessler²

Motivation

Objective: to match keypoints across moving cameras

severe view changes \rightarrow performance degradation

Spatio-temporal features: background

Cuboid [Dollar2005] HOG/HOF [Laptev2008] HOG3D [Klaser2008] Tracking of local image features (sequential)

Daisy3D [Trulls2012] ORB-SLAM [MurrAntal 2015]

Centre for Not designed for matching between cameras

Localisation and descriptor extraction

ORB sampling pattern

Localisation of FAST keypoints

Orientation assignment

CIS centre for intelligent sensing Rublee et al., "ORB: an efficient alternative to SIFT and SURF", IEEE Intern. Conf. on Computer Vision, 2011

Spatio-temporal binary features

Feature tracking: frame-to-frame matching with nearest neighbour

Spatio-temporal binary features

Descriptor reduction (dominant bits)

Descriptor reduction (stable bits)

CIS centre for intelligent sensing

Spatio-temporal patches from camera *i*

Spatio-temporal patches from camera *j*

Weighted linear combination of two masked Hamming distances [Balntas2017]

CIS centre for intelligent sensing V. Balntas et al., "Binary Online Learned Descriptors", IEEE Queen Mary Trans. on Pattern Analysis and Machine Intelligence, 2017

Experimental setup: methods and dataset

- T-DS: temporally dominant + stable bits descriptor
- T-D: temporally dominant bits descriptor
- S-ORB: set of temporally ORB descriptors
- LMED: single ORB with least median dist [MurArtal2015]

CIS centre for intelligent sensing *R. Mur-Artal et al., "ORB-SLAM: a versatile and accurate monocular SLAM system", IEEE Trans. on Robotics, 2015*

Performance evaluation

- Similarity matching
 - nearest neighbor with ratio test (1-to-1)
 - threshold-based (M-to-M)
- Dissimilarity measures
 - T-DS \rightarrow weighted Hamming distance
 - T-D, LMED \rightarrow Hamming distance
 - S-ORB → set2set min dist
- Performance measures

F-score

lligent sensing

- P: precision # correct matches/# matches
- R: recall # correct matches/# true correspondences

2 (P x R) / (P + R)

Feature tracking results

- TECHNOLOGY
- ENVIRONMENTAL SCIENCE & ENGINEERING PROGRAM · BACHELOR OF TECHNOLOGY (B-TECH)
- PROGRAMME OFFICE PROFESSIONAL ACTIVITIES CENTRE (PAC) ENVIRONMENTAL SCIENCE ENGINEERING OFFICE

CIS centre for intelligent sensing Short

Trajectory length

T-DS: a lot of wrong matches

centre for

Similarity matching: threshold-based (M-to-M) intelligent sensing

Matching results

T-DS: a lot of wrong matches, but good recall

centre for intelligent sensing Similarity matching: threshold-based (M-to-M)

Matching results

T-DS: a lot of wrong matches, but good recall S-ORB: best, but computationally expensive

centre for intelligent sensing Similarity matching: threshold-based (M-to-M)

centre for

intelligent sensing

T-DS: a lot of wrong matches, but good recall S-ORB: best, but computationally expensive \downarrow extra cost of $O(L_iL_i)$ for each pair

L: trajectory length

Similarity matching: threshold-based (M-to-M)

- New spatio-temporal binary descriptor (T-DS)
 - temporally dominant and stable bits from sets of ORB (S-ORB)
 - outperforms LMED [MurArtal2015]
- However, the set of ORB descriptors (S-ORB)
 - outperforms all other approaches
 - computationally expensive to match
- Future work
 - reduction that preserves matching efficiency
 - to consider scale

