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The Data Ecosystem

Data about us:

Data generated by us:

Data around us:
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Data About Us
We found thousands of trackers across the 

world who follow our clicks and trade our data.

Our digital footprint include data 

we are not even aware of. Hence 

Provenance is a major issue.

TMA 2014, PAM 2016 and “Anatomy of the Third-Party Web Tracking Ecosystem” on 

MIT TR 2014. 

• Ad Blocking is not the long-term solution, see: “Ad-Blocking and Counter Blocking: A 

Slice of the Arms Race”, USENIX 2016.
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Fig. 5: The biggest organisational ID-sharing group in the logged-out
mode. Link thickness represents the frequency of collaboration between two
organisations. A Darker colored organisations are involved in higher number
of cross-organisational ID-sharing.

acquisitions of tracking companies from 2005 for a period of three years. In [9],
they examined the access of web trackers to personal information based on the
category of the first-party website in which they are embedded. They found that
websites providing health and travel-related services disclose more information
to trackers than other types of websites. Gill et al. [10] studied the amount
of inferred information about users through tracking their visited websites by
ad networks. Liu et al. [11] have looked at tracking personal data on the web
using ISP travel from 2011, however the big shift away from using clear text in
the web introduces a much more complicated user ID sharing ecosystem in the
web today. They observed that ad networks are able to estimate users’ interest
with 50% accuracy. These studies showed the possible access of trackers to the
user personal information whereas we study the scale and nature of tracking
ecosystem.

Roesner et al. [12] proposed a framework for classifying the behaviour of web
trackers based on the scope of the browsing profile they produce. They show
the spread of the identified classes amongst the top 500 websites in the world.
Zarras et al. [13] studied the ecosystem of ad networks that serve malicious
advertisement. Interestingly, they observed some ad networks which more than
a third of their traffic belongs to malicious advertisement. Gomer et al. [14]
focused on the network aspects of third-party trackers which appeared in the



Data Generated by Us

• Online Social media

• Wearable devices

– Signals indicative of physical & mental health

– Largely suffering from data isolation and poor user 

interaction (see publications: qmwearables.eecs.qmul.ac.uk)
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health. Knowledge about the user’s current affective and
emotional state and identification of critical states such as
depression or stress can build the basis for new interven-
tions, targeted therapies and prevention through early de-
tection. Technology, and especially ubiquitous mobile and
wearable devices, can support these strategies to target
mental health and well-being.

Figure 1: The Apple Watch UI: the
Digital Crown wheel is used for
scrolling through answer options;
the touch display is used for
swiping gestures and clicking the
submit button.

Mobile and Wearable Sensing Advances
Technological advances and miniaturised technology en-
abled current trends towards connected, smart, and highly
sensor-equipped mobile and wearable devices, like smart-
phones and smartwatches. Especially, personal fitness
trackers and bio-signal sensing smartwatches are pop-
ular amongst consumers and this trend is prognosed to
continue [2]. This growing interest of consumers in their
own health data and trends like the Quantified Self and Per-
sonal Informatics movement are drivers for new technology
advances and products. Platform for personal health data
storage, like Apple’s HealthKit or Google’s Health, not just
allow eased data availability for consumers, but also pro-
vide new opportunities for health studies in the wild. There
are already frameworks targeting these areas, like Apple’s
ResearchKit1 or ResearchStack2 for Android. These frame-
work ease the process of developing user-friendly, unified
and scientific mobile phone apps for large scale user stud-
ies.

Opposing to mere mobile devices, wearables offer the ad-
vantage of the closeness to the body. Biosignals like heart
rate, skin conductance and blood pressure can be used
to predict current emotional states and mood [4, 6]; but
most of these studies have been conducted using expen-
sive medical devices for targeted for experimental settings

1http://researchkit.org/
2http://researchstack.org/

or especially designed devices, just available to a few. The
utilisation of widely available consumer wearable devices,
like the Apple Watch, allow for a broader user base and
large-scale, in-the-wild data collection and interventions.
But problems arise in terms of data reliability and with these
uncertified and untested devices, which makes prior evalua-
tion crutial.

The basis for technology-driven preventions and interven-
tions are robust algorithms for analysing the gathered sens-
ing data. We will present a wearable application, based on
the widely-used Apple Watch smartwatch, which eases the
collection of emotional experience samples and sensing
data, such as heart rate, location, ambient noise, and phys-
ical activity. This application builds the basis for data-driven
interventions and therapies.

Related Work
The computational power and sensor richness of mobile
phones allows researchers to leverage these for detect-
ing emotional and well-being states of the users. Mobile
phone data, such as call/SMS/app usage, location and
emotion self-assessments have been utilised in research
to find correlations [3]. While mobile usage, weather and
personality traits have been found to be a accurate predic-
tor of stress [1], other researchers have used the mobile
phone usage data to determine states of boredom [5]. The
StudentLife project, for example, used mobile phone data
of students and correlated it with their academic perfor-
mance and depression levels [11]. The Affective Diary used
mobile phone usage data, photos and bluetooth to detect
nearby people [9]; they used this data to detect the stressed
state of the user and presented the data in a diary format
to support reflection. EmotionSense is an Andorid app for
social psychology experiments [7]. It collects various mo-
bile sensor data, audio for speech recognition and emotion

(a) Activity breakdown (b) Leaderboard view (c) Notifications and interventions

Fig. 2. The QatarSense app interface for feedback and interaction with young children.

the healthcare domain. The current range of implantable or
wearable medical devices also face security challenges from
adversaries(see [39] for a detailed discussion). These devices
are often optimized for functionality and efficiency, rather than
security, hence their vulnerabilities can subject them to data
manipulation attacks.

C. Ethics and Privacy

The highly sensitive and private nature of health data
pose a number of ethical challenges for ubiquitous monitoring
using wearable devices and social media [40], [41]. Sharing of
these data between different providers, and even the medical
professionals, introduces a new level of challenges with the
increased level of cross-inferences possible across disjoint
datasets. A number of solutions, such as use of anonymization
techniques [42] and user-controlled aggregation points such
as the Databox [43] have been proposed in order to address
some of these challenges by providing privacy-preserving
methods of accessing and analyzing otherwise scattered pieces
of information.

V. OPPORTUNITIES

In this paper we have presented some potential scenarios in
which the aggregation of of disparate sources of information,
mainly wearable devices, EHRs, and social media content,
can improve and potentially transform the current trends
in personal and public health and wellness. Availability of

such large-scale data form a variety of source, if collected
and dealt with responsibility and carefully, presents a great
opportunities for unprecedented advances in healthcare and
wellness research. We have presented some recent of the recent
research in this space and our ongoing efforts in data fusion
form different sources in order to improve our understanding
of the individuals’ overall wellbeing.

One can envision new opportunities in personal health and
understanding correlation and causations between physical and
mental health (e.g., using data from an individuals’ EHR,
prescribed medication, and post-hoc sentiment analysis of
their social media content), or public health (understanding
relationship between mental health or moods, and natural
conditions [44] or financial situations). Privacy challenges
remain a major obstacle to wide-scale use of personal data for
public health inference, though advances in large-scale privacy-
preserving analysis techniques such as distributed Differential
Privacy [45] and secure personal data storage facilities can
potentially mitigate the privacy issues.

One of the main objectives of the Quantified Self and e-
health technologies is the provision of effective behavioural
interventions for promoting better health [46]. Similarly, the
more holistic healthcare systems will not solely rely on single-
sourced data points such as blood pressure and heart rate. To
this end, we believe the aggregation of various form of Small
(personal) data [47] under the 360� Quantified Self architecture
can provide a wealth of additional benefits when compared to



Data around us

• IoT devices

• Cyber Physical Systems
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CPS Applications and Challenges

• Opportunities

– Infrastructure monitoring

– Understanding individuals’ wellbeing & public health

– Enabling personalised services 

• Challenges

– Real-time control & adaptation

– Accountability & liability

– Algorithmic bias, price discrimination, public exposure,...

– Same with IoT/mobile data: see “Privacy Leakage in Mobile 

Computing: Tools, Methods, and Characteristics” 2014.

Can we do detailed, user-centric, contextual analytics 
without privacy disasters and legal challenges?
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Outline

• CPS introduction & Motivations

• Privacy-preserving sensing & analytics

• The Databox platform
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Cooperative learning 
Case study: smartphone activity recognition
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Figure 1: Privacy preserving machine learning frame-
work

the framework. We can break down the analytics pro-
cess into feature extraction and classification modules:

• Feature Extractor : This module gets the input
data, operates an algorithm on input data and
outputs a new feature vector. This intermediate
feature needs to keep the necessary information
about the first classification task (CT

1

), while pro-
tecting against the second classification task (CT

2

)
as much as possible. Usually, these two objec-
tives are contradictory, i.e., decreasing the infor-
mation available to CT

2

causes a decrease in the
information available to CT

1

too. An ideal feature
extractor module would keep enough information
about CT

1

despite hiding information available to
CT

2

as much as possible. The first objective could
be quantified by evaluating the CT

1

classifier ac-
curacy. The measure for the privacy-preservation
will be explored in section 3.3.

• Classifier : This module gets the intermediate fea-
tures, generated by the feature extractor, as its in-
put for the CT

1

classifier. In practice, this module
can be any ordinary classifier and privacy of inter-
mediate data will be ensured by the first module
(feature extractor).

As most cloud providers do not set the user privacy
as their primary concern, a validation method is needed
for the user to ensure that their privacy is warranted.
This validation method could be tailored based the on
design of each module, so every instance of this frame-
work needs a specific validation method. In order to
use this framework in a specific problem we should de-
termine the followings:

• Choosing an appropriate CT

1

classifier.

• Designing a feature extractor and evaluate its pri-
vacy.

• Designing a privacy validation method for client

In Section 3, we explain our proposed system archi-
tecture based on this framework.

(a) Training simple embedding

(b) Using simple embedding. Intermediate layer is passed through
communication channel.

Figure 2: Simple embedding of a deep network

3. DEEP PRIV-EMBEDDING
Due to the increasing popularity of DL models in an-

alytics applications, in this section we address how to
embed an existing DL model in our proposed frame-
work. Complex deep networks consist of many layers
and we use them in our framework using a layer separa-
tion mechanism. At the first step, we must choose the
optimal intermediate layer from a deep network. Then
we can store the layers before the intermediate layer on
the mobile as a feature extractor, and the layers after
that in the cloud server as the classifier (see Figure 1).

Choosing the intermediate layer from higher layers
of the network intrinsically comes with privacy compro-
mises. In [30], the authors reconstruct an original image
from each layer and the accuracy of reconstruction de-
creases by using higher layers. As we go up through the
deep network layers, the features get more specific to the
classification task [44] and irrelevant information to the
specific classification will be gradually lost. Hence, by
using the layer separation mechanism, we achieve two
important objectives simultaneously: (i) we end up with
the feature extractor easily, and (ii) we benefit from the
intrinsic characteristics of DL models for classification
tasks. This approach satisfies the initial criteria we set
for our proposed framework. In this paper, we refer to
this embedding as the simple embedding. You can see
train and test phase of this embedding in Figure 2. In
section 6 we will evaluate the e�ciency of this approach.

Moreover, experiments show that the accuracy of CT

1

does not decrease, when we reduce the dimension of the
intermediate feature with Principle Component Analy-
sis (PCA). Having done this, we can highly reduce the
communication overhead between the client and server.
We call this embedding (with PCA applied) as the re-

duced simple embedding.

3

(a) Training advanced embedding with Siamese structure where
we have identical network structure and weights connected by
dashed lines are equal.

(b) Using advanced embedding (with PCA projection and noise
addition in client side and reconstruction and classification in
server side)

Figure 3: Advanced embedding of a deep network

Deep networks disentangle the underlying variations
in training distribution [7]. They learn invariant fea-
tures which are useful for many tasks at the same time.
This useful feature of deep network, learning general
features, adversely a↵ects the privacy of deep networks.
For our exemplar task, we need to manipulate the inter-
mediate layer and extract a new feature in a way that
one could not identify the person in an image using a
cloud-based face recognition model. One way to do this
is to have a many to one mapping. This is the main
idea of k-anonymity. Suppose k di↵erent male images
are mapped to one feature vector. Having this vector,
an attacker will have confusion between k possible per-
sonalities. We use the Siamese network [10] to accom-
plish this task. To the best of our knowledge, this is the
first time that the Siamese network is used as a privacy
preservation technique.

In order to increase the privacy when revealing mobile
information to the server, we can fine-tune the existing
deep model in a specific manner and test it in a di↵erent
way. Our main contribution here relies on fine-tuning
the model with the Siamese architecture, based on the
chosen intermediate layer. Fine-tuning with Siamese ar-
chitecture results in a feature space where objects with
the same CT

1

classes cluster in together. Due to this
transformation, classification borders of CT

2

get faded,
consequently CT

2

becomes harder or even impossible,
while the CT

1

is not a↵ected. This approach makes

the feature extractor more private, while preserving the
privacy for the user against inference attacks on the
cloud. We refer to this embedding as the Siamese em-

bedding, where Siamese fine-tuning is applied. In addi-
tion, we can reduce the dimensions of the intermediate
feature without any deficiency; we refer to this embed-
ding method as the reduced Siamese embedding.

Another method which increases the client privacy
and inference uncertainty of unauthorized tasks is noise
addition. A service provider can determine a noise ad-
dition strategy for its clients in order to increase the
uncertainty of other undesired tasks. We refer to noisy

embedding whenever we use noise addition within the
feature extractor. Also We refer to the noisy reduced
Siamese embedding as advanced embedding. In order
to see the e↵ect of Siamese fine-tuning, dimensionality
reduction and noise addition, advanced embedding is
shown in Figure 3.

When the Siamese network fine-tuning is applied, ob-
jects within the same class are clustered. By choosing
the appropriate noise level, borders of all classification
tasks, except CT

1

, would be faded. This will not hap-
pen for simple embedding, because it does not have the
property of Siamese feature space. As a result, ad-
vanced embedding would be expected to have higher
privacy protection against CT

2

than the noisy simple
embedding, while it has almost the same accuracy of
CT

1

. Hence in the feature extractor module of advanced
embedding, the following steps should be taken:

• Applying primary layers (which are fine-tuned with
the Siamese network).

• Projecting the result on PCA Eigenvectors to re-
duce the dimensionality.

• Adding noise to the projection.

The classifier module should do these steps:

• Reconstructing the PCA projections.

• Applying remaining layers to get the final result.

In what follows we discuss our Siamese fine-tuning,
dimensionality reduction and noise addition strategy in
details.

3.1 Siamese Privacy Embedding
The Siamese architecture has been used in verifica-

tion applications for long time [10]. It provides us with
a kernel space, where similarity between the data points
is defined in by their euclidean distance. The main idea
of Siamese network is forcing the representations of two
similar points to become near each other, and the repre-
sentations of two dissimilar points become far. In order
to do this, our training dataset should consists of pairs
of similar and dissimilar points. For a pair of points, one
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Figure 9: Gender Classification. Comparison of simple,
reduced simple, Siamese and reduced Siamese embed-
ding on di↵erent intermediate layers, while doing trans-
fer learning. Accuracy of the original face recognition
is 75%.

spectively.
The result of transfer learning for di↵erent embed-

dings on di↵erent intermediate layers is presented in
Figure 9. Overall, what stands out from this figure is
that applying (reduced) simple or Siamese embedding
results in a considerable decrease in the accuracy of face
recognition from Conv5 1 to Conv5 3. The reason of
this trend is that as we go up through the layers, the
features of each layer will be more specific to the gen-
der classification (CT

1

). That is to say, the features of
each layer don’t have information related to face recog-
nition (CT

2

) as much as even its previous layer. In
addition, for all of the layers, face recognition accuracy
of Siamese embedding is by far less than the accuracy of
simple embedding. This result has route in training of
Siamese embedding with Siamese network which causes
a dramatic drop in the accuracy. As it is shown in Fig-
ure 9, when Conv5 3 is chosen as the intermediate layer
in Siamese embedding, the accuracy of face recognition
is 2.3%, just ahead of random accuracy. Another inter-
esting point of this figure is the e↵ect of dimensionality
reduction on the accuracy of face recognition. The re-
duced simple and Siamese embeddings has lower face
recognition accuracy than simple and Siamese embed-
ding, respectively.

To see how much these changes adversely a↵ect ac-
curacy of desired task which is gender classification,
we report di↵erent embeddings accuracies in table 1.
The result of table 1 conveys two important messages.
First, as the gender classification accuracy of Siamese
and simple embedding are approximately the same, ap-
plying Siamese idea does not decrease accuracy of de-
sired task. Other important result is that Siamese em-

Table 1: Accuracy of Gender Classification on Di↵erent
Embeddings. (PCA Dimension for reduced embeddings
with Conv5-1, Conv5-2, and Conv5-3 as Intermediate
Layer Is 8, 6, and 4 Respectively.)

Accuracy on LFW
Conv5-1 Conv5-2 Conv5-3

simple 94% 94% 94%
reduced simple 89.7% 87% 94%

Siamese 92.7% 92.7% 93.5%
reduced Siamese 91.3% 92.9% 93.3%
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Figure 10: Accuracy vs. privacy for gender classifica-
tion using VGG-16 structure in advanced embedding
(conv5 3 is the intermediate layer)

bedding is more robust to PCA than simple embed-
ding. In other words, gender classification accuracy of
reduced Siamese embedding is close to Siamese embed-
ding, whereas dimensionality reduction damage the ac-
curacy of simple embedding. Figure 9 and table 1 show
that applying Siamese network and dimensionality re-
duction results in preserving privacy while gender clas-
sification accuracy does not decrease dramatically.

In order to validate the feature extractor, we use the
rank measure proposed in Section 4.2. By increasing
the noise variance, we get more privacy and less accu-
racy. The service provider should gives us an accuracy-
privacy curve (like Figure 10) and we can build exactly
the same result with this kind of privacy measurement
(which is independent of face recognition model).

In fact privacy and accuracy can be considered as two
adversaries and increasing privacy of face recognition
comes with decreasing of accuracy of gender classifica-
tion. We show this dependency in Figure 10, where one
can see the superiority of theadvance embedding (noisy
reduced Siamese) over noisy reduced simple embedding.
From this figure, it is obvious that by increasing privacy,
gender classification accuracy decreases more slowly in
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) as much as even its previous layer. In
addition, for all of the layers, face recognition accuracy
of Siamese embedding is by far less than the accuracy of
simple embedding. This result has route in training of
Siamese embedding with Siamese network which causes
a dramatic drop in the accuracy. As it is shown in Fig-
ure 9, when Conv5 3 is chosen as the intermediate layer
in Siamese embedding, the accuracy of face recognition
is 2.3%, just ahead of random accuracy. Another inter-
esting point of this figure is the e↵ect of dimensionality
reduction on the accuracy of face recognition. The re-
duced simple and Siamese embeddings has lower face
recognition accuracy than simple and Siamese embed-
ding, respectively.

To see how much these changes adversely a↵ect ac-
curacy of desired task which is gender classification,
we report di↵erent embeddings accuracies in table 1.
The result of table 1 conveys two important messages.
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and simple embedding are approximately the same, ap-
plying Siamese idea does not decrease accuracy of de-
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bedding is more robust to PCA than simple embed-
ding. In other words, gender classification accuracy of
reduced Siamese embedding is close to Siamese embed-
ding, whereas dimensionality reduction damage the ac-
curacy of simple embedding. Figure 9 and table 1 show
that applying Siamese network and dimensionality re-
duction results in preserving privacy while gender clas-
sification accuracy does not decrease dramatically.

In order to validate the feature extractor, we use the
rank measure proposed in Section 4.2. By increasing
the noise variance, we get more privacy and less accu-
racy. The service provider should gives us an accuracy-
privacy curve (like Figure 10) and we can build exactly
the same result with this kind of privacy measurement
(which is independent of face recognition model).

In fact privacy and accuracy can be considered as two
adversaries and increasing privacy of face recognition
comes with decreasing of accuracy of gender classifica-
tion. We show this dependency in Figure 10, where one
can see the superiority of theadvance embedding (noisy
reduced Siamese) over noisy reduced simple embedding.
From this figure, it is obvious that by increasing privacy,
gender classification accuracy decreases more slowly in
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Outline

• CPS introduction & Motivations

• Privacy-preserving sensing & analytics

• The Databox platform
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Databox vision

• An open-source personal networked system:

– collates, curates, and mediates access to our personal data. 

– Enables interaction, sense-making, and privacy-preserving 

analytics on personal data, with potential wider societal benefits 

(Haddadi et al., CCR 2013)

• Not yet another data silo:

– cooperative design approach, involving engagement with all
stakeholders (sources, collectors, processors, organisations, 

and subjects) 

See Haddadi et al., "Personal Data: Thinking Inside the Box”, (MIT-TR, Aarhus 2015)
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Privacy-Aware Personal Data Platform
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EPSRC Databox: Privacy-Aware Infrastructure for Managing Personal Data 

3-years, started October 2016: www.databoxproject.uk
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Interaction between the components
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Databox and apps ecosystem
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Databox - Home

Databox - Cloud
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Code available on https://github.com/me-box/



Developer Community Engagement
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www.databoxproject.uk



Conclusions

• Personal Data analytics face complex challenges 

and we need new approaches for data utilisation.

• Databox, edge-computing, and user-centric 

processing methods are timely enablers in this 

direction

• Interesting new approaches for personal data, 

ambient sensing, actuation, and HDI

For more information, software, and papers:
http://www.eecs.qmul.ac.uk/~hamed/
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