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Context
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Video Surveillance

• 4-6M cameras in U.K.
• 500’000 cameras in Greater London

– Londoner recorded more than 300 times a day

• History of abuse
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Video Surveillance

• Intrusion detection
– Residential surveillance, retail surveillance, …

• Traffic control
– Speed control

• Access to places
– Car license plate recognition

• Event detection
– Child/Elderly care

• Marketing/statistics
– Customers habits

– Number of visitors

• …
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History of Abuse

• Criminal abuse
– Criminal misuse by law enforcement officers

• Institutional abuse
– Spy upon political demonstrations and political activists

• Discrimination
– Racial discrimination

• Voyeurism
– Bored male operators spying on women

– Footage of public cameras made publicly available
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Advanced Video Analytics

• Advances video analytics
– Object detection and tracking

– Face detection and recognition

– People in the scene

– Cars license plates

• Big media data analysis
• Deep learning
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Context

Social Media

• 2-3 Terabytes of photos 
uploaded every day

• 300 hours of video 
uploaded every minute

• A lot of personal information!
• Allows to make link between different sources of information
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Context – Market Sizes

• Video surveillance

– 150M cameras/year

• Mobile phones

– 1B cameras/year

• Automotive industry

– 100M cameras/year in 2020
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Privacy Protection in 

Visual Data
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Definition

• Privacy is linked to personal information

– Identifiable individuals

– Gender, race, age, color of clothes, facial features, etc.

• Privacy protection

– Limit access to personal information in recorded or streamed video

– Require to identify regions with privacy-sensitive information

– Predefined static zones

– Automatic and dynamic using video analytics

– Active with RFID tags

– May depend on the context, external knowledge, and other linkable 
sources of information
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Categories of Privacy Protection Solutions

• Visual privacy filters

– Distort, remove or hide visual information in regions containing privacy-

sensitive information

• Smart cameras

– Cameras which embedded video analytics tools and only output alerts or 

metadata descriptors

• System-level security

– Access management and policies at the system-level

– Private information is only accessible by those users granted such rights
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Pixelization

• Naïve approach for privacy protection

– Sometimes used in TV, Internet, social networks, etc. in 

order to obscure faces for anonymity

• Notable reduction of resolution in ROI

– Substitute a square block of pixels with its average

– Very easy to implement!!

• Drawback
– Irreversible

– Not efficient at concealing information!
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Blur

• Naïve approach for privacy protection
– Sometimes used in TV, Internet, social networks, etc. in order 

to obscure faces for anonymity

• Removes details in ROI by applying a Gaussian low 
pass filter
– Image is convolved with a 2D Gaussian function

– Very easy to implement!!

• Drawback
– Irreversible

– Not efficient at concealing information!
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Masking

• Naïve approach for privacy protection
– Sometimes used in TV, Internet, social networks, etc. in order 

to obscure faces for anonymity

• Replace ROI by a plain form
– Silhouette of privacy-sensitive regions

– Very easy to implement!!

• Drawback
– Irreversible
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Scrambling / Encryption

• Scrambling is applied to the ROIs
– Sensitive information is concealed, e.g. people, license plate, …

– Process is reversible with secret encryption key, kept by trusted third party

– Cryptographically secure

– Standard-compliant codestream / standard decoder

– Coding performance should not be adversely affected

– Complexity should not be significantly increased
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Scrambling / Encryption

• Image-domain
– Randomly flip bits in one or more bit planes 

• Pros
– Very simple

– Independent from the subsequent encoding scheme

– Does not affect the codestream syntax → standard compliance

• Cons
– Significantly alter statistics of video signal

– Ensuing compression less efficient

codestreamimage Scrambling

Encoder

Transform Entropy Coding
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Scrambling / Encryption

• Codestream-domain
– Randomly flip bits in codestream

• Pros
– Applied on codestream after encoding

• Cons
– Require parsing of codestream

– Difficult to guarantee syntax remains standard compliant and 
will not crash a decoder

codestreamimage

Encoder

Transform Entropy Coding Scrambling
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Scrambling / Encryption

• Transform-domain
– Randomly flip transform coefficients 

• Pros
– Does not adversely affect subsequent entropy coding

– Strength of scrambling can be controlled

– Does not affect the codestream syntax → standard compliance

• Cons
– Must be integrated inside the encoder

codestreamimage Transform

Encoder

Scrambling Entropy Coding
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Scrambling in H.264/AVC
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• Flexible Macroblock Ordering (FMO)
– Two slice groups for foreground and background MBs

– Slice Group Map Type 6

– Explicit assignment of each MB to one of the slice groups

– ROI segmentation mask is restricted to 16x16 MB boundaries

– Background MB will not use scrambled foreground MB for spatial 
Intra prediction

• Temporal Inter prediction
– Modify the mode selection to force some MB to be coded in Intra 

mode to prevent use of scrambled data for Inter prediction

Scrambling in H.264/AVC
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• Each 4x4 block in foreground MB 

• Random sign inversion
– Pseudo-randomly flip the sign of quantized coefficients 

(weakly correlated)

• Random permutation
– Rearrange the order of coefficients

– Knuth shuffle to generate a permutation of n items with 
uniform random distribution

Scrambling in H.264/AVC
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• Advantages
– Fully reversible

– Same scrambled stream is transmitted to all users

– Small impact in terms of coding efficiency

– Requires a low computational complexity

Scrambling in H.264/AVC

Pseudo-random sign inversion Pseudo-random permutation
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Scrambling in H.264/AVC

Pseudo-random sign inversion Pseudo-random permutation
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Results: Coding Efficiency

(a) Hall Monitor (b) Road

• Overhead for FMO Slice Group Map Type 6
– 1 bit per MB

– CIF luminance frame: 12 Kb/s
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• Assumptions
– CIF luminance frame

� 101376 coefficients 

– ROIs is known and cover 5% of image
� 5068 coefficients

� 316 blocks

• Random sign inversion
– 5% of coefficients are non-zero → 253 coefficients 
– 2253 combinations for each frame

• Random permutation
– (16!)316 combinations for each frame

Security: Brute-Force Attack
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Smart MPEG-7 camera

XML scene description

• The MPEG-7 camera describes a scene in terms of semantic 
objects and of their properties

– Image analysis: segmentation, change detection, and tracking 
implemented on the camera DSP

– Scene description represented using MPEG-7 (XML)
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Smart MPEG-7 camera

<!-- ################################################## --!>
<!-- DDL output for object 4                            --!>
<!-- ################################################## --!>

<Object id="4">

<RegionLocator>
<BoxPoly> Poly </BoxPoly>
<Coords1> 237 222 </Coords1>
<Coords2> 230 252 </Coords2>
<Coords3> 240 286 </Coords3>
<Coords4> 308 287 </Coords4>
<Coords5> 312 284 </Coords5>

</RegionLocator>

<DominantColor>
<ColorSpace>  YUV  </ColorSpace>
<ColorValue1> 143.4 </ColorValue1>
<ColorValue2> 123.3 </ColorValue2>
<ColorValue3> 128.2 </ColorValue3>

</DominantColor>

<HomogeneousTexture>
<TextureValue> 9.02 </TextureValue>

</HomogeneousTexture>

<MotionTrajectory>
<TemporalInterpolation>

<KeyFrame>  100  </KeyFrame>
<KeyPos> 268.6 251.7 </KeyPos>
<KeyFrame>  101  </KeyFrame>
<KeyPos> 262.8 241.0 </KeyPos>

...

<KeyFrame>  138  </KeyFrame>
<KeyPos> 192.9 79.0 </KeyPos>

</TemporalInterpolation>
</MotionTrajectory>

</Object>

XML scene
description
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Smart MPEG-7 camera

Various statistics and simple decisions can be derived without revealing identity of people

original frame segmentation mask bounding box
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Benchmarking of

Privacy Protection Solutions
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Objectives

• Performance analysis of privacy protection solutions is still lacking
• It is paramount to validate proposed privacy protection solutions 

against user and system requirements for privacy
– It is unclear to which extend current privacy protection approaches can be 

efficiently integrated into existing architectures and deployed in large scale 
systems
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Face Recognition Algorithms

• Principal Components Analysis (PCA)
– Also known as eigenfaces

– A linear transformation is applied to rotate feature vectors from the initially large 
and highly correlated subspace to a smaller and uncorrelated subspace

• Linear Discriminant Analysis (LDA)
– LDA aims at finding a linear transformation which stresses differences between 

classes while lessening differences within classes (a class corresponds to all 
images of a given individual)
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Face Identification and Evaluation

• Preprocessing to reduce variations between images
– Face alignment aligned using eye coordinates

– Pixel values equalization, contrast and brightness normalization

• Training
– Create the subspace into which test images are subsequently projected and matched

• Testing
– A distance matrix is computed in the transformed subspace for all test images

– Two image sets are defined:

– gallery set is made of known faces

– probe set corresponds to faces to be recognized.

• Performance analysis
– For each probe image, the recognition rank is computed

– rank 0 means that the best match is of the same subject 

– rank 1 means that the second best match is of the same subject, etc.

– The cumulative match curve is obtained by summing correct matches for each rank

• Standard training, gallery and probe sets from the FERET test
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Face Identification and Evaluation

• Principal Components Analysis (PCA) (aka eigenfaces)
• Linear Discriminant Analysis (LDA)

• Preprocessing to reduce variations between images
• Training

– Create the subspace into which test images are subsequently projected and matched

• Testing
– A distance matrix is computed in the transformed subspace for all test images

– Two image sets are defined:

– gallery set is made of known faces

– probe set corresponds to faces to be recognized.

• Performance analysis
– Cumulative match curve based on the recognition rank 

• Standard training, gallery and probe sets from the FERET test
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Test Data

• Grayscale Facial Recognition Technology (FERET)
– Although it is not representative of typical video surveillance footage, this 

database is widely used for face recognition research

– We consider a subset of 3368 images of frontal faces for which eye coordinates 
are available

– Images have 256 by 384 pixels with eight-bit per pixel

– We further consider two series of images denoted by ‘fa’ and ‘fb’

– ‘fa’ indicates a regular frontal image

– ‘fb’ indicates an alternative frontal image, taken within seconds of the 
corresponding ‘fa’ image, where a different facial expression was requested 
from the subject. 

• Standard training, gallery and probe sets from the FERET test
– Training set: 501 images from the ‘fa’ series

– Gallery set: 1196 images from the ‘fa’ series

– Probe set: 1195 images from the ‘fb’ series
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Performance Analysis – Attack #1

• Simple attack
– Training and gallery sets are made of unaltered images

– Probe set corresponds to images with privacy protection

– In other words, altered images are merely processed by the face recognition 
algorithms without taking into account the fact that privacy protection tools have 
been applied. 

PCA LDA
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Performance Analysis – Attack #1

• For both PCA and LDA schemes applied on original images, recognition rate 

is superior to 70% at rank 0 (i.e. the best match is of the same subject as the 

probe), and superior to 90% at rank 50

• When applying a Gaussian blur, the performance drops radically for LDA. 

However, recognition rate remains high for PCA with 56% success at rank 0

• Pixelization fares worse. The recognition rate is 56% and 13% at rank 0 for 

PCA and LDA respectively

• Results clearly show that both region-based transform-domain scrambling 

approaches are successful at hiding identity. The recognition rate is nearly 

0% at rank 0, and remains below 10% at rank 50, for both PCA and LDA 

algorithms. In addition, it can be observed that both random sign inversion 

and random permutation schemes achieve nearly the same performance
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Performance Analysis – Attack #2

• More sophisticated attack
– Privacy protection tools are now applied to all images in the training, gallery and 

probe sets

– This corresponds to an attacker which gets access to protected data

– Alternatively, an attacker may attempt replicating the alteration due to privacy 
protection techniques on his own training and gallery sets

PCA LDA
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Performance Analysis – Attack #2

• With Gaussian blur, the performance remains nearly identical. It even 

improves slightly for LDA

• Pixelization is not much better at hiding facial information. The recognition 

rate is still 45% and 17% at rank 0 for PCA and LDA respectively

• Finally, both region-based transform-domain scrambling approaches are 

again successful at hiding identity. The recognition rate is nearly 0% at rank 0 

for both PCA and LDA algorithms.
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New Trends in 

Imaging Technology
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• Always more and more…

• Higher spatial and temporal 
resolutions
– Ultra High Definition (UHD), 4K, 8K

– High Frame Rate (HFR)

• Higher pixel depth
– High Dynamic Range (HDR)

• More views
– 3D, multi-view, free viewpoint

– Lightfield image representation

Trends
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High Dynamic Range and Human Visual System

• Human Visual System can adapt to a very large range of light 
intensities

– At a given time: 4-5 orders of magnitude

– With adaptation: 14 orders of magnitude

� Mechanical, photochemical and neuronal adaptive processes
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High Dynamic Range

Enhanced contrast with ability to capture details in both dark and bright regions

without HDR with HDR
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High Dynamic Range

Potential to greatly improve computer vision 
algorithms performance

Image matching using SURF

2 HDR images (log scaling) 

Proposed descriptor-optimal tone mapping operator (DoTMO) 

(11 correct and 3 incorrect matches). 

Reinhard TMO 

(3 correct and 11 incorrect matches). 

MantiukTMO

(4 incorrect and 3 correct matches).

Correct and incorrect matches are shown with yellow and red 

lines respectively. Green lines represent the special case of 

mismatch due to repetitive structure.
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• Drones

– Defense & security

– Increasing civilian use

• Mini-drones

– Cheap and easy to deploy

– Mostly unregulated

New devices
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Wrap-up
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Conclusions

• Privacy protection in visual data

– Difficult and complex problem! 

• Challenges

– Application- and context-dependent

– User and system requirements have to be better 

understood

– Lack of thorough performance analysis

– Systematic security analysis

– Effective integration into existing large-scale systems

– New imaging technologies

– Lack of business incentives
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The Last Word
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Thank you for your attention !!

Any questions ?

frederic.dufaux@l2s.centralesupelec.fr
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