

## PRIVACY PROTECTION IN VISUAL DATA: OVERVIEW AND CHALLENGES

Frédéric Dufaux

Laboratoire des Signaux et Systèmes (L2S) CNRS - CentraleSupelec - Université Paris-Sud

frederic.dufaux@l2s.centralesupelec.fr





#### • Context

#### • Privacy Protection in Visual Data

- Pixelization, Blur, Masking
- Scrambling/encryption
- Smart camera
- Benchmarking of Privacy Protection Solutions
- New Trends in Imaging Technology
- Conclusions



## Context



## **Video Surveillance**





- 4-6M cameras in U.K.
- 500'000 cameras in Greater London
  - Londoner recorded more than 300 times a day
- History of abuse



## **Video Surveillance**

#### Intrusion detection

- Residential surveillance, retail surveillance, ...

- Traffic control
  - Speed control

### Access to places

- Car license plate recognition

## • Event detection

- Child/Elderly care

## Marketing/statistics

- Customers habits
- Number of visitors









#### Criminal abuse

- Criminal misuse by law enforcement officers

## Institutional abuse

- Spy upon political demonstrations and political activists

## • Discrimination

- Racial discrimination

## • Voyeurism

- Bored male operators spying on women
- Footage of public cameras made publicly available



### • Advances video analytics

- Object detection and tracking
- Face detection and recognition
- People in the scene
- Cars license plates







- Big media data analysis
- Deep learning



## Context

#### **Social Media**

facebook.

 2-3 Terabytes of photos uploaded every day



 300 hours of video uploaded every minute



- A lot of personal information!
- Allows to make link between different sources of information



## **Context – Market Sizes**

- Video surveillance
  - 150M cameras/year



- **Mobile phones** 
  - 1B cameras/year

**Automotive industry** 



\_



# Privacy Protection in Visual Data



#### • Privacy is linked to personal information

- Identifiable individuals
- Gender, race, age, color of clothes, facial features, etc.

#### Privacy protection

- Limit access to personal information in recorded or streamed video
- Require to identify regions with privacy-sensitive information
  - Predefined static zones
  - Automatic and dynamic using video analytics
  - Active with RFID tags
- May depend on the context, external knowledge, and other linkable sources of information



#### • Visual privacy filters

 Distort, remove or hide visual information in regions containing privacysensitive information

#### • Smart cameras

 Cameras which embedded video analytics tools and only output alerts or metadata descriptors

#### • System-level security

- Access management and policies at the system-level
- Private information is only accessible by those users granted such rights



#### Naïve approach for privacy protection

Sometimes used in TV, Internet, social networks, etc. in order to obscure faces for anonymity

#### • Notable reduction of resolution in ROI

- Substitute a square block of pixels with its average
- Very easy to implement!!

$$I_{\text{pixelization}}(x, y) = \frac{1}{b^2} \sum_{i=0,\dots,b-1} \sum_{j=0,\dots,b-1} I\left(\left\lfloor \frac{x}{b} \right\rfloor + i, \left\lfloor \frac{y}{b} \right\rfloor + j\right)$$

#### • Drawback

- Irreversible
- Not efficient at concealing information!









#### • Naïve approach for privacy protection

- Sometimes used in TV, Internet, social networks, etc. in order to obscure faces for anonymity
- Removes details in ROI by applying a Gaussian low pass filter
  - Image is convolved with a 2D Gaussian function
  - Very easy to implement!!

$$I_{\text{Gaussian blur}}(x, y) = I(x, y) * G(x, y) \qquad G(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$



- Irreversible
- Not efficient at concealing information!





#### Naïve approach for privacy protection

 Sometimes used in TV, Internet, social networks, etc. in order to obscure faces for anonymity

#### • Replace ROI by a plain form

- Silhouette of privacy-sensitive regions
- Very easy to implement!!



- Drawback
  - Irreversible



#### • Scrambling is applied to the ROIs

- Sensitive information is concealed, e.g. people, license plate, ...
- Process is reversible with secret encryption key, kept by trusted third party
- Cryptographically secure
- Standard-compliant codestream / standard decoder
- Coding performance should not be adversely affected
- Complexity should not be significantly increased





- Image-domain
  - Randomly flip bits in one or more bit planes



- Pros
  - Very simple
  - Independent from the subsequent encoding scheme
  - Does not affect the codestream syntax  $\rightarrow$  standard compliance
- Cons
  - Significantly alter statistics of video signal
  - Ensuing compression less efficient



#### • Codestream-domain

- Randomly flip bits in codestream



- Pros
  - Applied on codestream after encoding
- Cons
  - Require parsing of codestream
  - Difficult to guarantee syntax remains standard compliant and will not crash a decoder



#### • Transform-domain

- Randomly flip transform coefficients



- Pros
  - Does not adversely affect subsequent entropy coding
  - Strength of scrambling can be controlled
  - Does not affect the codestream syntax  $\rightarrow$  standard compliance
- Cons
  - Must be integrated inside the encoder



## Scrambling in H.264/AVC





#### • Flexible Macroblock Ordering (FMO)

- Two slice groups for foreground and background MBs
- Slice Group Map Type 6
- Explicit assignment of each MB to one of the slice groups
- ROI segmentation mask is restricted to 16x16 MB boundaries
- Background MB will not use scrambled foreground MB for spatial Intra prediction

#### • Temporal Inter prediction

 Modify the mode selection to force some MB to be coded in Intra mode to prevent use of scrambled data for Inter prediction



- Each 4x4 block in foreground MB
- Random sign inversion
  - Pseudo-randomly flip the sign of quantized coefficients (weakly correlated)



#### Random permutation

- Rearrange the order of coefficients
- Knuth shuffle to generate a permutation of *n* items with uniform random distribution





#### • Advantages

- Fully reversible
- Same scrambled stream is transmitted to all users
- Small impact in terms of coding efficiency
- Requires a low computational complexity



Pseudo-random sign inversion



Pseudo-random permutation



## Scrambling in H.264/AVC



Pseudo-random sign inversion



Pseudo-random permutation



#### **Results: Coding Efficiency**



- Overhead for FMO Slice Group Map Type 6
  - 1 bit per MB
  - CIF luminance frame: 12 Kb/s



## • Assumptions

- CIF luminance frame
  - 101376 coefficients
- ROIs is known and cover 5% of image
  - 5068 coefficients
  - 316 blocks

## Random sign inversion

- 5% of coefficients are non-zero  $\rightarrow$  253 coefficients
- 2<sup>253</sup> combinations for each frame

## Random permutation

- (16!)<sup>316</sup> combinations for each frame



• The MPEG-7 camera describes a scene in terms of semantic objects and of their properties



- Image analysis: segmentation, change detection, and tracking implemented on the camera DSP
- Scene description represented using MPEG-7 (XML)



## **Smart MPEG-7 camera**

| XML scene<br>description | ###################################</th                                                                                                                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | <regionlocator><br/><boxpoly> Poly </boxpoly><br/><coords1> 237 222 </coords1><br/><coords2> 230 252 </coords2><br/><coords3> 240 286 </coords3><br/><coords4> 308 287 </coords4><br/><coords5> 312 284 </coords5><br/></regionlocator> |
|                          | <pre><dominantcolor>    <colorspace> YUV </colorspace>    <colorvalue1> 143.4 </colorvalue1>    <colorvalue2> 123.3 </colorvalue2>    <colorvalue3> 128.2 </colorvalue3> </dominantcolor></pre>                                         |
|                          | <homogeneoustexture><br/><texturevalue> 9.02 </texturevalue><br/></homogeneoustexture>                                                                                                                                                  |
|                          | <motiontrajectory><br/><temporalinterpolation><br/><keyframe> 100 </keyframe><br/><keypos> 268.6 251.7 </keypos><br/><keyframe> 101 </keyframe><br/><keypos> 262.8 241.0 </keypos><br/></temporalinterpolation></motiontrajectory>      |
|                          | <keyframe> 138 </keyframe><br><keypos> 192.9 79.0 </keypos><br><br>                                                                                                                                                                     |

</Object>



#### Various statistics and simple decisions can be derived without revealing identity of people





# Benchmarking of Privacy Protection Solutions



- Performance analysis of privacy protection solutions is still lacking
- It is paramount to validate proposed privacy protection solutions against user and system requirements for privacy
  - It is unclear to which extend current privacy protection approaches can be efficiently integrated into existing architectures and deployed in large scale systems



#### • Principal Components Analysis (PCA)

- Also known as eigenfaces
- A linear transformation is applied to rotate feature vectors from the initially large and highly correlated subspace to a smaller and uncorrelated subspace

#### • Linear Discriminant Analysis (LDA)

 LDA aims at finding a linear transformation which stresses differences between classes while lessening differences within classes (a class corresponds to all images of a given individual)



#### • Preprocessing to reduce variations between images

- Face alignment aligned using eye coordinates
- Pixel values equalization, contrast and brightness normalization
- Training
  - Create the subspace into which test images are subsequently projected and matched
- Testing
  - A distance matrix is computed in the transformed subspace for all test images
  - Two image sets are defined:
    - gallery set is made of known faces
    - probe set corresponds to faces to be recognized.

#### • Performance analysis

- For each probe image, the recognition rank is computed
  - rank 0 means that the best match is of the same subject
  - rank 1 means that the second best match is of the same subject, etc.
- The cumulative match curve is obtained by summing correct matches for each rank
- Standard training, gallery and probe sets from the FERET test



- Principal Components Analysis (PCA) (aka eigenfaces)
- Linear Discriminant Analysis (LDA)
- Preprocessing to reduce variations between images
- Training
  - Create the subspace into which test images are subsequently projected and matched
- Testing
  - A distance matrix is computed in the transformed subspace for all test images
  - Two image sets are defined:
    - gallery set is made of known faces
    - probe set corresponds to faces to be recognized.
- Performance analysis
  - Cumulative match curve based on the recognition rank
- Standard training, gallery and probe sets from the FERET test



#### • Grayscale Facial Recognition Technology (FERET)

- Although it is not representative of typical video surveillance footage, this database is widely used for face recognition research
- We consider a subset of 3368 images of frontal faces for which eye coordinates are available
- Images have 256 by 384 pixels with eight-bit per pixel
- We further consider two series of images denoted by 'fa' and 'fb'
  - 'fa' indicates a regular frontal image
  - 'fb' indicates an alternative frontal image, taken within seconds of the corresponding 'fa' image, where a different facial expression was requested from the subject.

#### • Standard training, gallery and probe sets from the FERET test

- Training set: 501 images from the 'fa' series
- Gallery set: 1196 images from the 'fa' series
- Probe set: 1195 images from the 'fb' series



#### • Simple attack

- Training and gallery sets are made of unaltered images
- Probe set corresponds to images with privacy protection
- In other words, altered images are merely processed by the face recognition algorithms without taking into account the fact that privacy protection tools have been applied.





- For both PCA and LDA schemes applied on original images, recognition rate is superior to 70% at rank 0 (i.e. the best match is of the same subject as the probe), and superior to 90% at rank 50
- When applying a Gaussian blur, the performance drops radically for LDA. However, recognition rate remains high for PCA with 56% success at rank 0
- Pixelization fares worse. The recognition rate is 56% and 13% at rank 0 for PCA and LDA respectively
- Results clearly show that both region-based transform-domain scrambling approaches are successful at hiding identity. The recognition rate is nearly 0% at rank 0, and remains below 10% at rank 50, for both PCA and LDA algorithms. In addition, it can be observed that both random sign inversion and random permutation schemes achieve nearly the same performance



#### • More sophisticated attack

- Privacy protection tools are now applied to all images in the training, gallery and probe sets
- This corresponds to an attacker which gets access to protected data
- Alternatively, an attacker may attempt replicating the alteration due to privacy protection techniques on his own training and gallery sets





- With Gaussian blur, the performance remains nearly identical. It even improves slightly for LDA
- Pixelization is not much better at hiding facial information. The recognition rate is still 45% and 17% at rank 0 for PCA and LDA respectively
- Finally, both region-based transform-domain scrambling approaches are again successful at hiding identity. The recognition rate is nearly 0% at rank 0 for both PCA and LDA algorithms.



# New Trends in Imaging Technology



- Always more and more...
- Higher spatial and temporal resolutions
  - Ultra High Definition (UHD), 4K, 8K
  - High Frame Rate (HFR)
- Higher pixel depth
  - High Dynamic Range (HDR)
- More views
  - 3D, multi-view, free viewpoint
  - Lightfield image representation





## High Dynamic Range and Human Visual System



- Human Visual System can adapt to a very large range of light intensities
  - At a given time: 4-5 orders of magnitude
  - With adaptation: 14 orders of magnitude
    - Mechanical, photochemical and neuronal adaptive processes



## **High Dynamic Range**



without HDR

with HDR

Enhanced contrast with ability to capture details in both dark and bright regions



## **High Dynamic Range**



Potential to greatly improve computer vision algorithms performance

#### Image matching using SURF

2 HDR images (log scaling)

Proposed descriptor-optimal tone mapping operator (DoTMO) (11 correct and 3 incorrect matches).

Reinhard TMO (3 correct and 11 incorrect matches).

MantiukTMO (4 incorrect and 3 correct matches).

Correct and incorrect matches are shown with yellow and red lines respectively. Green lines represent the special case of mismatch due to repetitive structure.



## **New devices**

#### • Drones

- Defense & security
- Increasing civilian use



### Mini-drones

- Cheap and easy to deploy
- Mostly unregulated





## Wrap-up



#### • Privacy protection in visual data

– Difficult and complex problem!

#### • Challenges

- Application- and context-dependent
- User and system requirements have to be better understood
- Lack of thorough performance analysis
- Systematic security analysis
- Effective integration into existing large-scale systems
- New imaging technologies
- Lack of business incentives









# Thank you for your attention !! Any questions ?

frederic.dufaux@l2s.centralesupelec.fr



- F. Dufaux and T. Ebrahimi, Scrambling for Privacy Protection in Video Surveillance Systems, IEEE Trans. on Circ. Syst. for Video Tech., vol. 18, no. 8, pp. 1168-1174, Aug. 2008.
- F. Dufaux and T. Ebrahimi, H.264/AVC Video Scrambling for Privacy Protection, in Proc.
   IEEE International Conference on Image Processing (ICIP'2008), San Diego, CA, Oct. 2008.
- F. Dufaux and T. Ebrahimi, Recent Advances in MPEG-7 Cameras, in SPIE Proc.
   Applications of Digital Image Processing XXIX, San Diego, CA, August 2006.
- F. Dufaux and T. Ebrahimi, A Framework for the Validation of Privacy Protection Solutions in Video Surveillance, in Proc. IEEE International Conference on Multimedia & Expo (ICME 2010), Singapore, July 2010.
- F. Dufaux, P. Le Callet, R. Mantiuk, M. Mrak, High Dynamic Range Video From Acquisition, to Display and Applications, Academic Press, 2016.
- A. Rana, G. Valenzise, F. Dufaux, Learning-Based Tone Mapping Operator for Image Matching, in Proc. IEEE International Conference on Image Processing (ICIP'2017), Beijing, China, Sept. 2017.
- A. Rana, G. Valenzise, F. Dufaux, Learning-based Adaptive Tone Mapping for Keypoint Detection, in Proc. IEEE International Conference on Multimedia & Expo (ICME'2017), Hong Kong, July 2017.