Compressed Sensing Based Methods for Switched Array Imaging

Published in: Applied Optics, 2016

Qiao Cheng, Akram Alomainy, Yang Hao

Antennas & Electromagnetics Group

- 1. Compressive sensing (CS) background
- 2. CS based array imaging
- 3. Performance analysis
- 4. Conclusion

Compressive sensing

Necessary condition for CS reconstruction:

- 1. Φ satisfy the RIP or Φ has low mutual coherence.
- 2. Signal x is sparse or x is compressible in a certain basis.

1. Compressive sensing (CS) background

- 2. CS based array imaging
- 3. Performance analysis
- 4. Conclusion

Array model

SAR Scheme

Phased Array Scheme

Switched array

Forward model

$$s(x',y') = \iint f(x,y) \exp(-j2kR) \, dx \, dy$$

Forward model

$$S = HF$$
, $H = FT_{2D}^{-1}[FT_{2D}[\cdot]\exp(jk_z z_0)]$

FT-CS

Backward model (backpropagation algorithm) $F = H^{\dagger}S, \quad H^{\dagger} = FT_{2D}^{-1}[FT_{2D}[\cdot]\exp(-jk_z z_0)]$ Queen Mary

University of Londor

Forward model $s(x',y') = \iint f(x,y) \exp(-j2kR) dx dy$

D-CS
$$s = Af$$
 $s(m,n) = \sum_{i=1}^{P} \sum_{j=1}^{Q} f(i,j) \exp(-j2kR(m,n,i,j))$

- 1. Compressive sensing (CS) background
- 2. CS based array imaging
- 3. Performance analysis
- 4. Conclusion

Simulation and experiment

Steaming gysytstem

Sparsity constraint

centre for

Complexity

Time complexity D-CS model $\mathcal{O}(KM^2N^2 + KN^2)$ FT-CS model $\mathcal{O}(2M^2 + 4M^2 \log M)$

Table 1. Complexity Comparison of D-CS Methods

Configuration	Computing time (s)	Loading time (s)	Storage
M = 41, N = 81	15.03	1.67	72 MB
M = 41, N = 121	33.61	3.84	221 MB
M = 81, N = 121	140.67	17.28	1.04 MB
M = 81, N = 161	224.36	27.12	1.37 GB
M = 134, N = 134	$1.45 imes 10^3$	88.65	2.94 GB
M = 134, N = 178	$4.58 imes10^3$	717.72	8.23 GB

Effects of undersampling

Effects of background noise

100% sampling rate

- 1. Compressive sensing (CS) background
- 2. CS based array imaging
- 3. Performance analysis
- 4. Conclusion

- Sparsity constraint plays an important role in reconstruction.
- The D-CS method achieves the best resolution but requires heavy computation and large number of measurements.
- The FT-CS method does not show much improvement in resolving power. However, it is more robust in many cases.
- Practical imaging systems are suggested to use the D-CS and FT-CS methods jointly.

Thanks

