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ﬂ Intro: Machine Listening
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Machine Listening

Machine listening: extracting meaningful information from audio
signals.

@ Sounds: speech, music, environmental/everyday sounds
@ Disciplines: signal processing, machine learning, acoustics,
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Machine Listening for Music Signals

Core problems:

@ Tonality: mulfi-pitch detection,
chord/key estimation

@ Rhythm: onset detection, beat
tfracking, meter induction

@ Source (insfrument)
separation/identification

Applications:
@ Music information retrieval
@ Interactive music systems
@ Computer music
@ Musicology
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Machine Listening for Everyday Sounds

Applications:
@ Audio archiving
@ Security/surveillance
@ Smart homes/cities
@ Acoustic ecology

Core problems:
@ Sound event detection
@ Sound scene recognition
@ Source separation
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@ Matrix/Spectrogram Factorization
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Matrix/spectrogram factorization (1)

@ Non-negative Matrix Factorization (NMF) - (Lee and Seung,
1999)

@ Unsupervised algorithm for factorizing a matrix into a low
rank decomposition

@ Constraint; non-negative data

@ This allows a parts-based representation

@ Applications: detection, dimensionality reduction, clustering,
classification, denoising, prediction...
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Matrix/spectrogram factorization (2)

NMF Model:

@ Given a non-negative matrix V find non-negative matrix
factors W and H such that:

V ~ WH

where:

) V c Rnxm
) W c Rﬂxf
? H c Rf)(m

@ The rank r of the factorization is chosen as (n + m)r < nm, so
that data is compressed

@ Various algorithms (e.g. EM, ALS) and cost functions (e.g. KL,
IS) have been proposed in the literature
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Matrix/spectrogram factorization (3)

NMF can be applied to audio (magnitude) spectrograms:
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Matrix/spectrogram factorization (4)

Probabilistic Latent Semantic Analysis (PLSA)

@ In 1999, Thomas Hofmann proposed a technique for text
processing and retrieval, called Probabilistic Latent Semantic
Indexing (PLSI)

@ ...which is also called structure Probabilistic Latent Semantic
Analysis (PLSA)

@ ...and also Probabilistic Latent Component Analysis (PLCA)!

@ In fact, PLSA/PLSI/PLCA are the probabilistic counterparts of
NMF using a specific cost function (KL divergence)

@ This inferpretation offers a framework that is easy to
generalise and extend
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Matrix/spectrogram factorization (5)

PLCA model
wit ~ P(w, 1) = P(f) Z P(w|z)P(z|t)

V,,.+t input spectrogram, P(f) frame energy, P(w|z): basis spectra, P(z|t):
component activations.

@ PLCA can decompose a spectrogram into a series of
spectral bases that correspond to ‘sound events’ and a
series of event activations

@ Applications in machine listening: sound event detection,
multi-pitch detection, source separation/identification
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Matrix/spectrogram factorization (6)

@ Convolufive models: extracting shifted structures from
non-negative data
@ Shiff-invariant PLCA (across 1 dimension):

Vit = P(w, 1) = Z P(2) Z P(w — f|2)P(f, |2)
z f

V.11 log-frequency spectrogram, P(z): component prior, P(w|z): basis
spectra, P(f, z|t): pitch impulse distribution.
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Matrix/spectrogram factorization (7)

SIPLCA example (across 2 dimensions):
detecting footstep sounds
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@ Application: Music Signal Analysis
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Application: Music Signal Analysis (1)

Goal:
@ Create a multiple-instrument music transcription system

@ Express frequency modulations & tuning changes through
shift-invariance

@ Express each note as a temporal succession of sound stafe
spectral templates
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Application: Music Signal Analysis (2)

@ Proposed model: Hidden Markov Model-constrained
Shift-Invariant PLCA

@ Fixed (pre-extracted) dictionary of spectral templates per
instrument, pitch, sound state

TRANSCRIPTION POST- MIDI
ADIO__|specTROGRAM SCRIPTIO o8
MODEL PROCESSING

NOTE DICTIONARY

E. Benetos and S. Dixon, “Multiple-instrument polyphonic music transcription using a
temporally constrained shift-invariant model”, Journal of the Acoustical Society of
America, 133(3):1727-1741,2013
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Application: Music Signal Analysis (3)
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Figure : (a) The ground-truth piano-roll of Mozart’s Piano Sonata K.333,
3rd mvt. (b) The transcription output piano-roll. Original recording:
Synthesized franscription:
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Application: Music Signal Analysis (4)
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Figure : A time-pitch representation in 20 cent resolution for a recording
of J.S. Bach’s Musical Offering, BWV 1079.
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Application: Music Signal Analysis (5)

NMF convergence (video)
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Application: Music Signal Analysis (6)

Speed:
@ Convergence is observed with 10-15 iterations
@ Runtime: 1-2.5 x real-time (CPU)

@ Faster matrix multiplications with GPU processing (0.3 x
real-time)

Evaluation:

@ Proposed method ranked first in public evaluations for
multiple-FO estimation and note fracking (MIREX 2013, 2015)

Code:
@ http://www.eecs.qmul.ac.uk/~emmanouilb/code.html
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Application: Music Signal Analysis (7)

Priors in PLCA / Music Language Models

@ Combine PLCA acoustic model with Recurrent Neural
Network music language model (MLM) for prediction

@ MLM is incorporated into PLCA using Dirichlet priors
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S. Sigtia, E. Benetos, S. Cherla, T. Weyde, A. d’Avila Garcez, and S. Dixon, "An RNN-based
music language model for improving automatic music transcription”, in Proc. ISMIR, 2014.
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Application: Music Signal Analysis (8)

@ Silvet note transcription plugin:
https://code.soundsoftware.ac.uk/projects/silvet/
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@ Application: Sound Scene Analysis
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Application: Sound Scene Analysis (1)

@ Adapt PLCA model for detecting overlapping sound events

@ Each event class contains several exemplars; each exemplar
consists of a sequence of sound states

@ Appearance of sound states controlled by event-wise HMMs

@ Input representation: (auditory-motivated) Equivalent
Rectangular Bandwidth filterbank

ERB scale bin

10 2
time (sec)
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Application: Sound Scene Analysis (2)

Proposed Model

Vit ~ P(w, ) = P(1) 3 P(wlg, c,s)P(sIt)P(cls, 1)P(qls, 1)

q.c,s

@ V, +: ERB spectrogram
@ P(1): spectrogram energy (known quantity)

@ P(w|q,c,Ss): spectral template for event class s, exemplar ¢, and sound
state g (pre-extracted, fixed)

@ P(s|t): event activation over time
@ P(cls, t): exemplar contribution for each event class, over time

@ P(qg|s,1): sound state conftribution for each event class, over time

@ P(qls,t) controlled by an event-wise HMM
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Application: Sound Scene Analysis (3)
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Top: P(s|t). Bottom: post-processed binary event-roll.
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Application: Sound Scene Analysis (4)

@ Dataset: DCASE 2013 OS (office sounds in different
density/noise conditions)
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E. Benetos, G. Lafay, M. Lagrange, and M. D. Plumbiley, “Detection of overlapping
acoustic events using a temporally-constrained probabilistic model”, ICASSP, 2016.
https://code.soundsoftware.ac.uk/projects/sound-event-detection-plca
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Application: Sound Scene Analysis (6)

@ Goal: identifying multiple bird species from continuous
recordings ®

05 1 15

’rimez(sec)
@ Approach: PLCA with pre-extracted templates per species

@ Participated in ICML 2013 Bird Challenge on identifying 35
bird species; system in the top 25% of submissions

E. Benetos, "Acoustic identification of bird species using probabilistic latent component
analysis”, in ICML Workshop on Machine Learning for Bioacoustics, pp. 77-78,2013.
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@ Discussion
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Discussion (1)

Conclusions
@ Matrix factorization: powerful tool for audio analysis
@ Interpretable, extensible, computationally efficient
@ Additional uses: sound scene recognition, drum
tfranscription, instrument recognition...
@ Used in several commercial & public tools
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Discussion (2)

Future Directions
@ Input time-frequency representations
@ Beyond the Short-time Fourier Transform: CQT, VQT, auditory

spectra...
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Discussion (3)

Future Directions (cont’d)
@ Acoustic language models

@ Sound event taxonomy
@ Source/acoustic environment adaptation
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