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Machine Listening

Machine listening: extracting meaningful information from audio

signals.

Sounds: speech, music, environmental/everyday sounds

Disciplines: signal processing, machine learning, acoustics,

perception
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Machine Listening for Music Signals

Core problems:

Tonality: multi-pitch detection,

chord/key estimation

Rhythm: onset detection, beat

tracking, meter induction

Source (instrument)

separation/identification

Applications:

Music information retrieval

Interactive music systems

Computer music

Musicology
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Machine Listening for Everyday Sounds

Core problems:

Sound event detection

Sound scene recognition

Source separation

Applications:

Audio archiving

Security/surveillance

Smart homes/cities

Acoustic ecology
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Matrix/spectrogram factorization (1)

Non-negative Matrix Factorization (NMF) - (Lee and Seung,

1999)

Unsupervised algorithm for factorizing a matrix into a low

rank decomposition

Constraint: non-negative data

This allows a parts-based representation

Applications: detection, dimensionality reduction, clustering,

classification, denoising, prediction...
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Matrix/spectrogram factorization (2)

NMF Model:

Given a non-negative matrix V find non-negative matrix

factors W and H such that:

V ≈ WH

where:

V ∈ R
n×m

W ∈ R
n×r

H ∈ R
r×m

The rank r of the factorization is chosen as (n + m)r < nm, so

that data is compressed

Various algorithms (e.g. EM, ALS) and cost functions (e.g. KL,

IS) have been proposed in the literature
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Matrix/spectrogram factorization (3)

NMF can be applied to audio (magnitude) spectrograms:
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Matrix/spectrogram factorization (4)

Probabilistic Latent Semantic Analysis (PLSA)

In 1999, Thomas Hofmann proposed a technique for text

processing and retrieval, called Probabilistic Latent Semantic

Indexing (PLSI)

...which is also called structure Probabilistic Latent Semantic

Analysis (PLSA)

...and also Probabilistic Latent Component Analysis (PLCA)!

In fact, PLSA/PLSI/PLCA are the probabilistic counterparts of

NMF using a specific cost function (KL divergence)

This interpretation offers a framework that is easy to

generalise and extend
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Matrix/spectrogram factorization (5)

PLCA model

Vω,t ≈ P(ω, t) = P(t)
∑

z

P(ω|z)P(z|t)

Vω,t : input spectrogram, P(t) frame energy, P(ω|z): basis spectra, P(z|t):

component activations.

PLCA can decompose a spectrogram into a series of

spectral bases that correspond to ‘sound events’ and a

series of event activations

Applications in machine listening: sound event detection,

multi-pitch detection, source separation/identification
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Matrix/spectrogram factorization (6)

Convolutive models: extracting shifted structures from

non-negative data

Shift-invariant PLCA (across 1 dimension):

Vω,t ≈ P(ω, t) =
∑

z

P(z)
∑

f

P(ω − f |z)P(f , t |z)

Vω,t : log-frequency spectrogram, P(z): component prior, P(ω|z): basis
spectra, P(f , z|t): pitch impulse distribution.
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Matrix/spectrogram factorization (7)

SIPLCA example (across 2 dimensions):

detecting footstep sounds
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Application: Music Signal Analysis (1)

Goal:

Create a multiple-instrument music transcription system

Express frequency modulations & tuning changes through

shift-invariance

Express each note as a temporal succession of sound state

spectral templates
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Application: Music Signal Analysis (2)

Proposed model: Hidden Markov Model-constrained

Shift-Invariant PLCA

Fixed (pre-extracted) dictionary of spectral templates per

instrument, pitch, sound state

SPECTROGRAM
TRANSCRIPTION

MODEL

POST-

PROCESSING

AUDIO MIDI

NOTE DICTIONARY

E. Benetos and S. Dixon, “Multiple-instrument polyphonic music transcription using a
temporally constrained shift-invariant model”, Journal of the Acoustical Society of

America, 133(3):1727-1741, 2013
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Application: Music Signal Analysis (3)

(b)

t (sec)

M
ID

I
p

it
c

h

(a)

M
ID

I
p

it
c

h

2 4 6 8 10 12 14

2 4 6 8 10 12 14

40

50

60

70

80

90

40

50

60

70

80

90

Figure : (a) The ground-truth piano-roll of Mozart’s Piano Sonata K.333,
3rd mvt. (b) The transcription output piano-roll. Original recording:
Synthesized transcription:
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Application: Music Signal Analysis (4)
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Figure : A time-pitch representation in 20 cent resolution for a recording
of J.S. Bach’s Musical Offering, BWV 1079.
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Application: Music Signal Analysis (5)

NMF convergence (video)
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Application: Music Signal Analysis (6)

Speed:

Convergence is observed with 10-15 iterations

Runtime: 1-2.5 × real-time (CPU)

Faster matrix multiplications with GPU processing (0.3 ×
real-time)

Evaluation:

Proposed method ranked first in public evaluations for

multiple-F0 estimation and note tracking (MIREX 2013, 2015)

Code:

http://www.eecs.qmul.ac.uk/∼emmanouilb/code.html
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Application: Music Signal Analysis (7)

Priors in PLCA / Music Language Models

Combine PLCA acoustic model with Recurrent Neural

Network music language model (MLM) for prediction

MLM is incorporated into PLCA using Dirichlet priors

AUDIO
TIME-FREQUENCY

REPRESENTATION
TRANSCRIPTION PREDICTION

PIANO-ROLL

DICTIONARY

S. Sigtia, E. Benetos, S. Cherla, T. Weyde, A. d’Avila Garcez, and S. Dixon, “An RNN-based
music language model for improving automatic music transcription”, in Proc. ISMIR, 2014.
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Application: Music Signal Analysis (8)

Silvet note transcription plugin:

https://code.soundsoftware.ac.uk/projects/silvet/
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Application: Sound Scene Analysis (1)

Motivation

Adapt PLCA model for detecting overlapping sound events

Each event class contains several exemplars; each exemplar

consists of a sequence of sound states

Appearance of sound states controlled by event-wise HMMs

Input representation: (auditory-motivated) Equivalent

Rectangular Bandwidth filterbank
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Application: Sound Scene Analysis (2)

Proposed Model

Vω,t ≈ P(ω, t) = P(t)
∑

q,c,s

P(ω|q,c, s)P(s|t)P(c|s, t)P(q|s, t)

Vω,t : ERB spectrogram

P(t): spectrogram energy (known quantity)

P(ω|q,c, s): spectral template for event class s, exemplar c, and sound
state q (pre-extracted, fixed)

P(s|t): event activation over time

P(c|s, t): exemplar contribution for each event class, over time

P(q|s, t): sound state contribution for each event class, over time

P(q|s, t) controlled by an event-wise HMM
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Application: Sound Scene Analysis (3)
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Top: P(s|t). Bottom: post-processed binary event-roll.
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Application: Sound Scene Analysis (4)

Dataset: DCASE 2013 OS (office sounds in different

density/noise conditions)
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E. Benetos, G. Lafay, M. Lagrange, and M. D. Plumbley, “Detection of overlapping
acoustic events using a temporally-constrained probabilistic model”, ICASSP, 2016.
https://code.soundsoftware.ac.uk/projects/sound-event-detection-plca
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Application: Sound Scene Analysis (5)

Goal: identifying multiple bird species from continuous

recordings
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Approach: PLCA with pre-extracted templates per species

Participated in ICML 2013 Bird Challenge on identifying 35

bird species; system in the top 25% of submissions

E. Benetos, “Acoustic identification of bird species using probabilistic latent component
analysis”, in ICML Workshop on Machine Learning for Bioacoustics, pp. 77-78, 2013.
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Discussion (1)

Conclusions

Matrix factorization: powerful tool for audio analysis

Interpretable, extensible, computationally efficient

Additional uses: sound scene recognition, drum

transcription, instrument recognition...

Used in several commercial & public tools

http://dml.city.ac.uk/vis/
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Discussion (2)

Future Directions

Input time-frequency representations

Beyond the Short-time Fourier Transform: CQT, VQT, auditory

spectra...
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Discussion (3)

Future Directions (cont’d)

Acoustic language models

Sound event taxonomy

Source/acoustic environment adaptation

E. Benetos Matrix Decomposition Methods for Audio Analysis 33 / 34



Many thanks to

Chris Cannam

Simon Dixon

Artur d’Avila Garcez

Dimitrios Giannoulis
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