Probabilistic Machine Learning Models for Intelligent Sensing: Computer Vision and Beyond

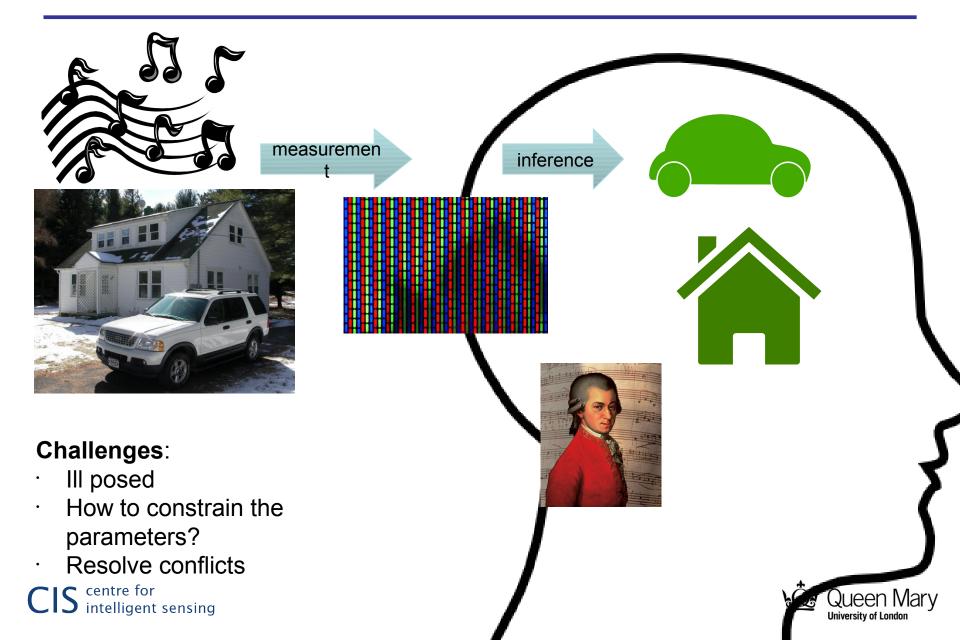
## **Dr. Timothy Hospedales**

Centre for Intelligent Sensing Queen Mary University of London





## Intelligent Sensing?



**Intelligent Sensing** 

- · How to resolve different sources of data?
- How to solve ill-posed problems?
- How to not start from scratch every time?
- How to make the right measurements?





#### Outline

٠

٠

•

#### **Intelligent Sensing**

#### **Data Fusion**

- Data and annotation efficiency
  - Unsupervised
  - Weakly-supervised
  - Semi-supervised
  - Multi-label/multi-instance
  - Zero-shot learning
- **Observation** efficiency
  - Active learning





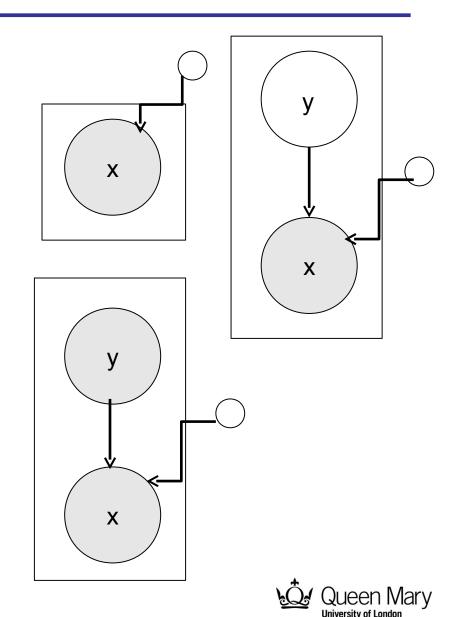
## Notation

٠

•

- Unsupervised Learning
  - Observe {x}, model p(x)
  - Observe {x}, model p(x,y)

- Supervised Learning
  - Observe {x,y}, model p(x,y)





## **Machine Learning**

- **Classic Problems:**
- · Inference
- · Marginal Likelihood
- · ML Learning,
  - Density Estimation
- · EM Learning
- Model Selection

elligent sensing

Χ

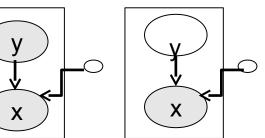
$$p(y|x) = p(x y)p(y) / p(x)$$

$$p(x) = \int p(x, y) dy$$

$$\hat{\theta} = \operatorname{argmax} p(X|\theta)$$

$$\hat{\theta} = \operatorname{argmax} \int p(X, Y | \theta) dY$$

$$M = \operatorname{argmax} \int p(X, \mathbf{X}, \theta \mid M) p(M) dY d\theta$$



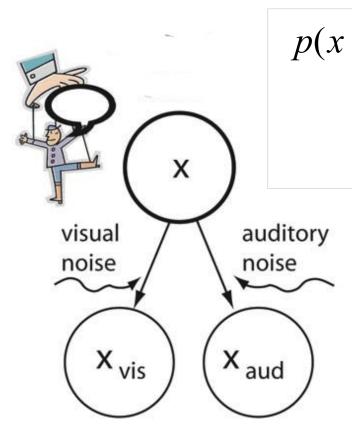


# Fusion and Data Association Multisensory perception





#### **Fusing Multiple Data Sources**



 $p(x \mid x_a, x_v) \propto$  $p(x_a, x_v | x)p(x)$  $= p(x_a | x)p(x_v | x)p(x)$ 

Optimal fusion depends on reliability of each modality

But how do you know the reliability of your senses?



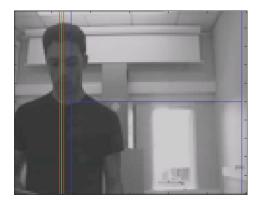


#### **Fusing Multiple Data Sources**

Aim: Given an audio-visual stream Learn the user's appearance & sound Learn the microphone and camera characteristics Fuse appearance and sound info for optimal localization

Challenges:

No supervision (No background subtraction) Real-time inference

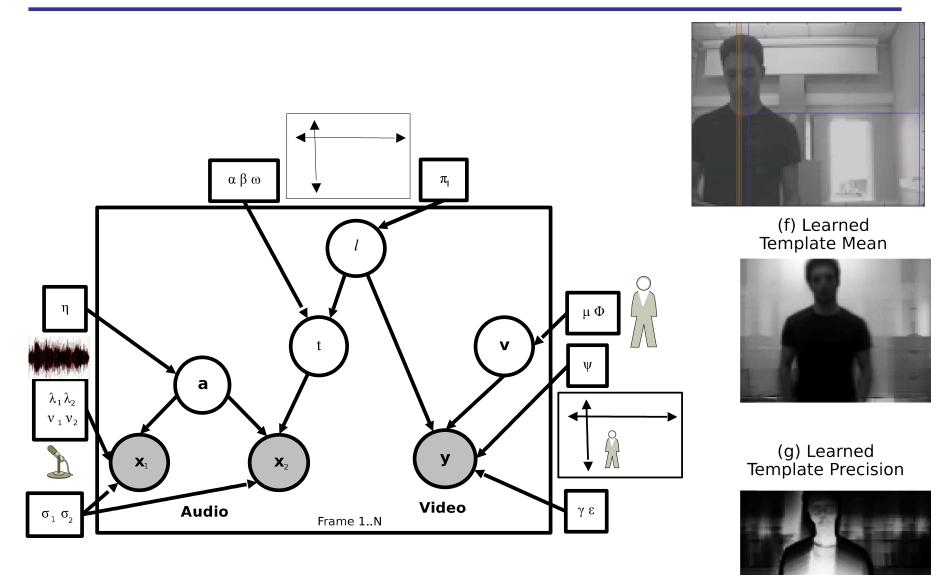






[IJCAI'07, PAMI'08]

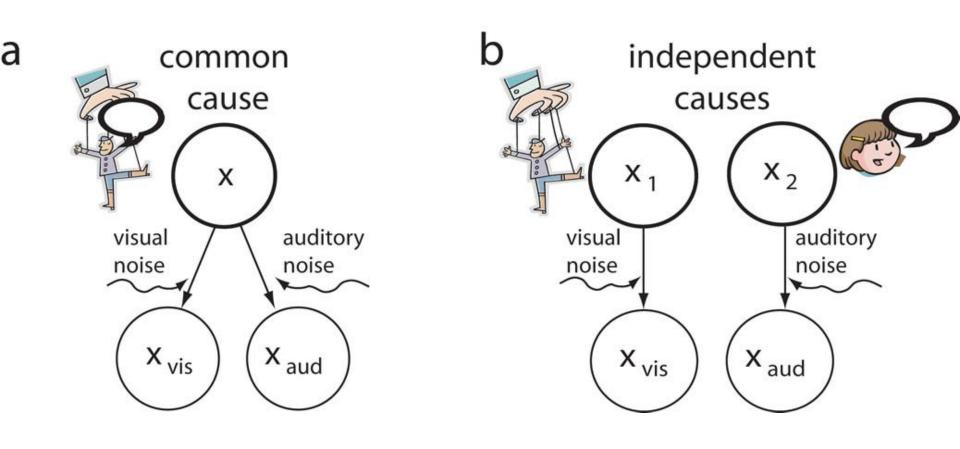
#### **Fusing Multiple Data Sources**



CIS centre for intelligent sensing

[IJCAI'07, PAMI'08]

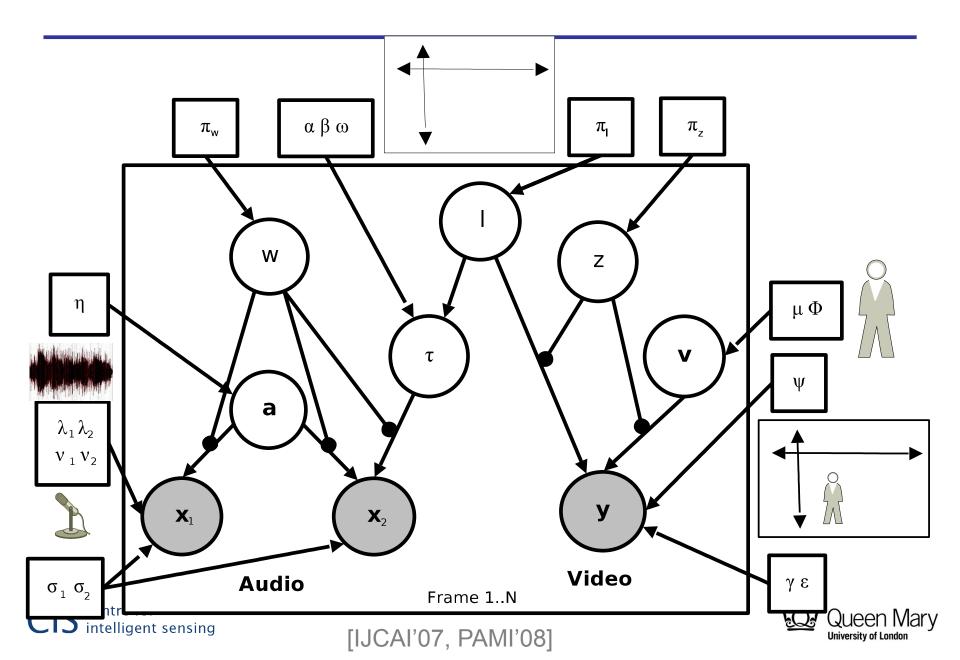
#### Fusion without correspondence?



CIS centre for intelligent sensing



#### Multiple Data Sources?



#### Fusion without correspondence?

#### Unsupervised AV Scene Understanding: Who Said What, Where and When?

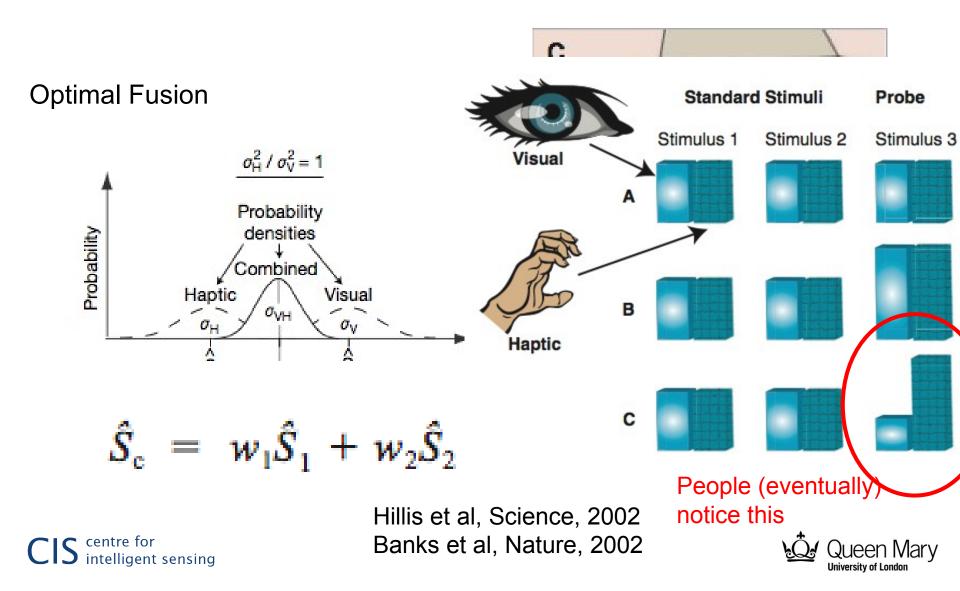


Abnormality Detection
 Multisensory perception

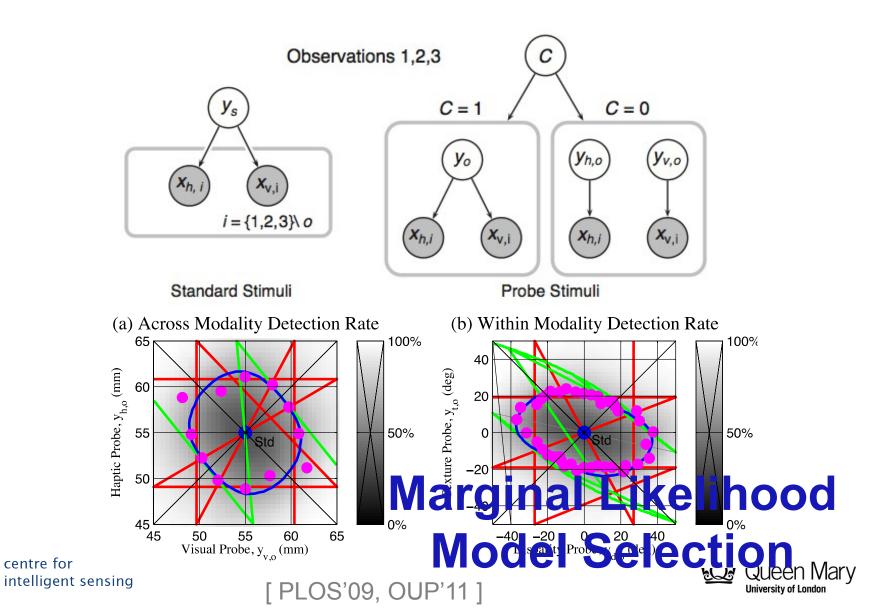




#### Human Multisensory Oddity detection



#### Human Multisensory Oddity detection





#### **Data Fusion**

- Optimally integrating multiple sensors
- Resolving multi-sensor data association





#### Outline

٠

٠

•

#### **Intelligent Sensing**

Data Fusion

#### **Data and annotation efficiency**

- Unsupervised
- Weakly-supervised
- Semi-supervised
- Multi-label/multi-instance
- Zero-shot learning
- **Observation** efficiency
  - Active learning





# Video Surveillance: Anomaly Detection & Clustering Unsupervised learning





## **Unsupervised Learning / Surveillance**

- · Aim: Given a video stream
  - Get domain knowledge by learning about activities
  - Detect abnormal behaviors as outliers against the model
- · Challenges:
  - No tracking
  - No camera calibration
  - No supervision
  - Complex behaviors
  - Real-time

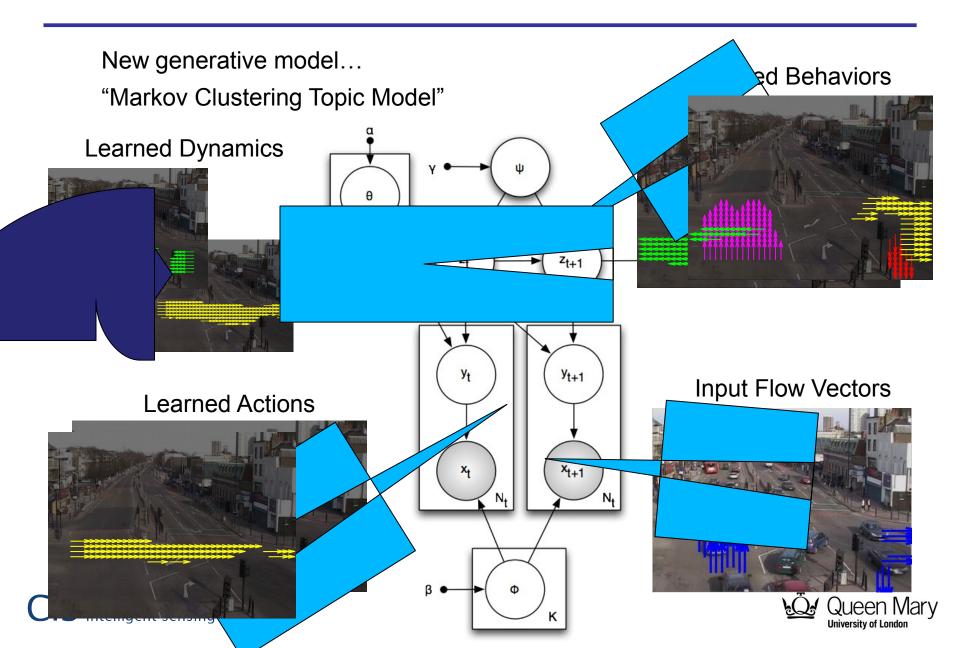






[ICCV'09, IJCV'11]

#### **Unsupervised / Surveillance: MCTM**



#### Unsupervised / Surveillance: MCTM Learning







Motion

## Unsupervised / Surveillance: MCTM: Abnormality



CIS centre for intelligent sensing

[ICCV'09, IJCV'11]



- What if you have seen a few known (but rare) behaviors you want to detect?
  - E.g., surveillance
- · These may also be subtle





## Weakly Supervised Learning / Surveillance

- · Aim: Given a video stream
  - Learn a detector for a rare and subtle behavior
- · Challenge
  - Use only weak annotation
  - Sparse training data
  - No tracking
  - Real-time
  - View as hard multi-instance learning (MIL) problem



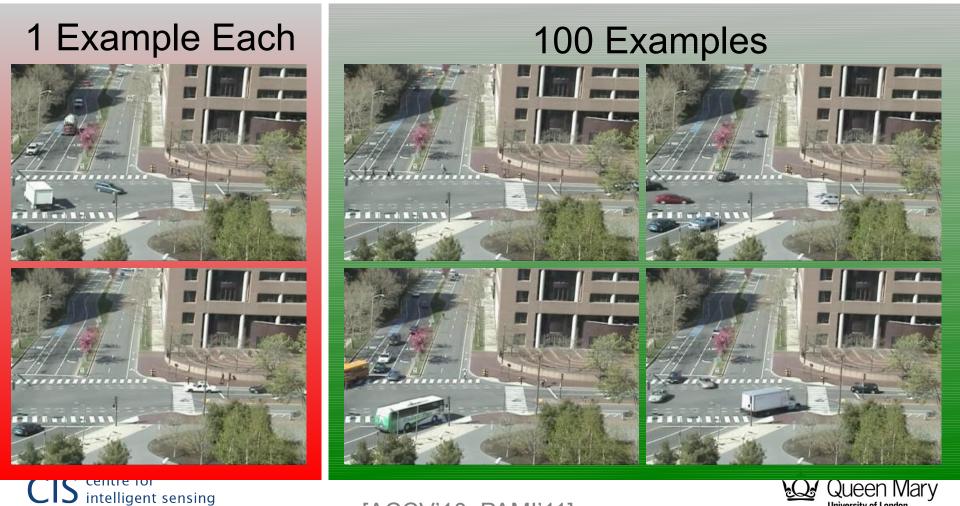
•



[ACCV'10, PAMI'11]

#### WSL / Surveillance: Rare Events

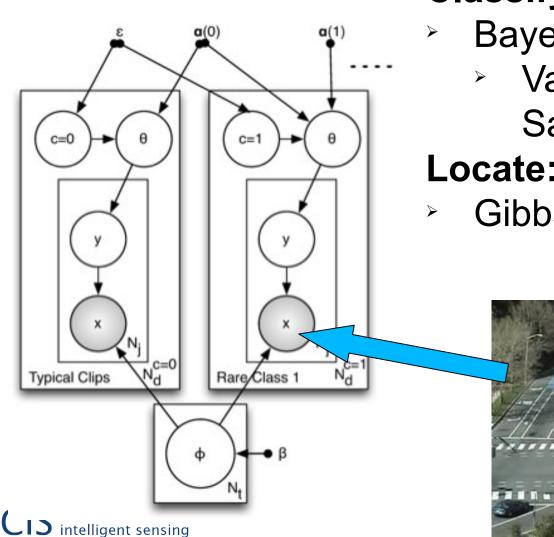
#### **Example Challenge**





[ACCV'10, PAMI'11]

## WSL / Surveillance: WSJTM



**Classify:** Compute p(C|X)

- **Bayesian Model Selection** 
  - Variational Importance Sampler
- **Locate:** Infer p(Y|X,C)

Gibbs



#### WSL / Surveillance: WSJTM: Results

#### WSJTM Classifier: Trained with Weak and Sparse Labels



## **Model Selection**





[ACCV'10, PAMI'11]



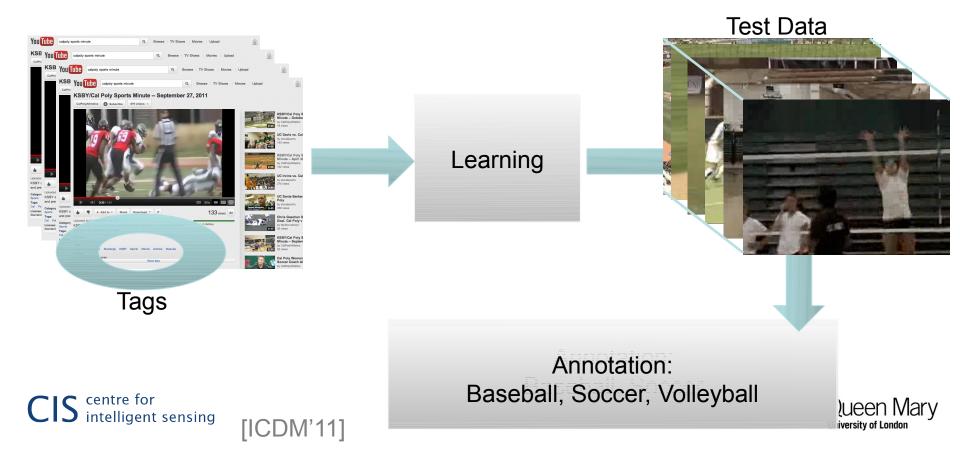
- What if you need more than one label per instance?
  - E.g., multi-media indexing.
- · The weak supervision problem gets harder...





Weakly Supervised Multi Label: Tagging

Aim: Learn video annotation model from tags
 Online video databases: Sports news

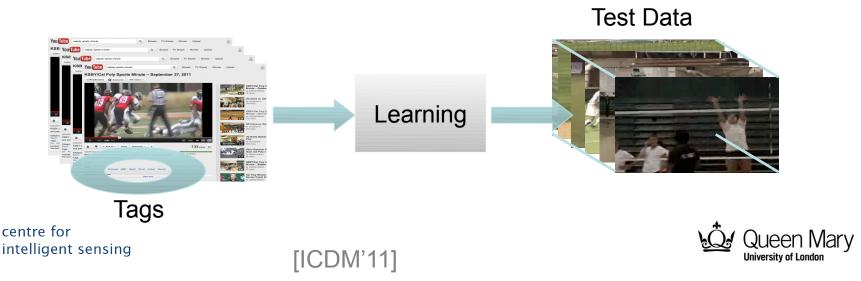


Weakly Supervised Multi Label: Tagging

#### Challenges:

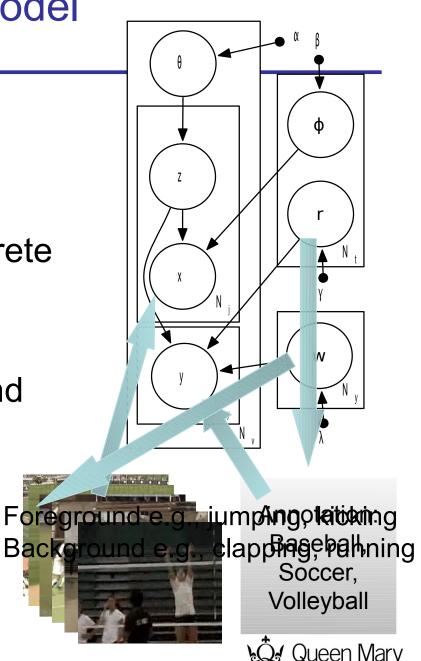
•

- Weak annotation
- Multiple labels per instance
- Huge intra-class variability



## Weak/Multi Label: VTT model

- Topic Model, e.g., LDA.
  - Density estimate for discrete data corpus p(X)
  - Our VTT model
    - Joint estimate for data and tags p(X,Y)
    - Permits annotation p(y|x)



University of Londo

•



#### Weakly Supervised Multi Label: Results



CIS centre for intelligent sensing



#### Weakly Supervised Multi Label: Insight

#### **Foreground Topics**

- Shared, e.g., running
- Specific, e.g., pitching





## EM Learning Inference





[ICDM'11]

#### Weakly Supervised / Multi Label Learning



Can we lean anything with no new data at all? - (Classification)



٠



## Zero-Shot Attribute Learning / Tag & Classify

- · Aim: Given a set of Tags & Classes
  - Learn how to tag
  - Learn how to relate tags to classes
  - Zero-shot learning from tag description





## Zero-Shot Learning (Look Mum! No Data!)



Stripes, Herbivore, Tail, Claws →Zebra





# Lion!

Lion:= Stripes, Herbivore, Tail, Claws





## Zero-Shot Learning (Look Mum! No Data!)



Stripes, Herbivore, Tail, Claws →Zebra





# Lion!

Lion:= Stripes, Herbivore, Tail, Claws



Candles, Cake, Clapping, Dancing →Birthday Party Wedding Dance:= Candles, Cake, Clapping, Dancing



**CIS** centre for intelligent sensing

## Zero-Shot Learning (Look Mum! No Data!)



Stripes, Herbivore, Tail, Claws →Zebra



Candles, Cake, Clapping, Dancing →Birthday Party



# Lion!

Lion:= Stripes, Herbivore, Tail, Claws



Wedding Dance:= Candles, Cake, Clapping, Dancing



**CIS** centre for intelligent sensing

## Latent Attribute Learning

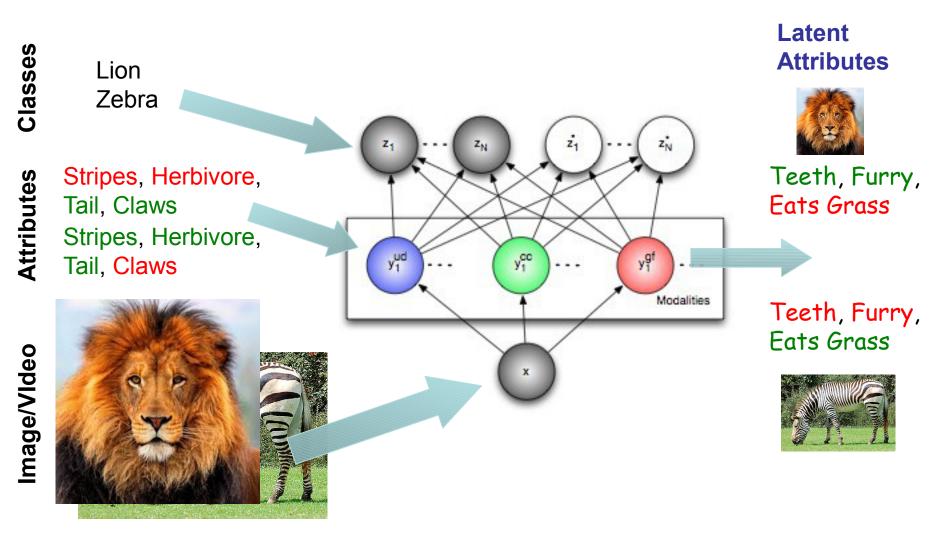
- · Aim: Given a set of Tags & Classes
  - Learn how to tag
  - Learn how to relate tags to classes
  - Zero-shot learning from tag description
- · Challenge: Reduce human effort
  - Avoid annotating every attribute on every training image
  - Avoid specifying every attribute on every new class

ECCV'12





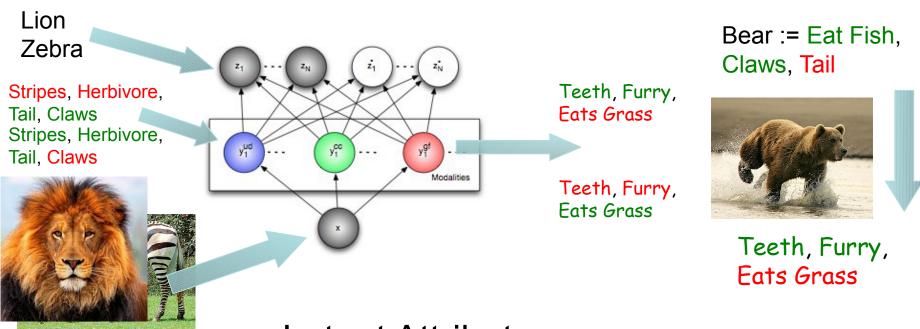
## Latent Attribute Learning



[ECCV'12]



## Latent Attribute Learning



- Latent Attributes:
- Less annotation work
- Increased Classification Accuracy
  - Conventional

Zero-shot

CIS centre for intelligent sensing EN Learge

### Zero-shot learning

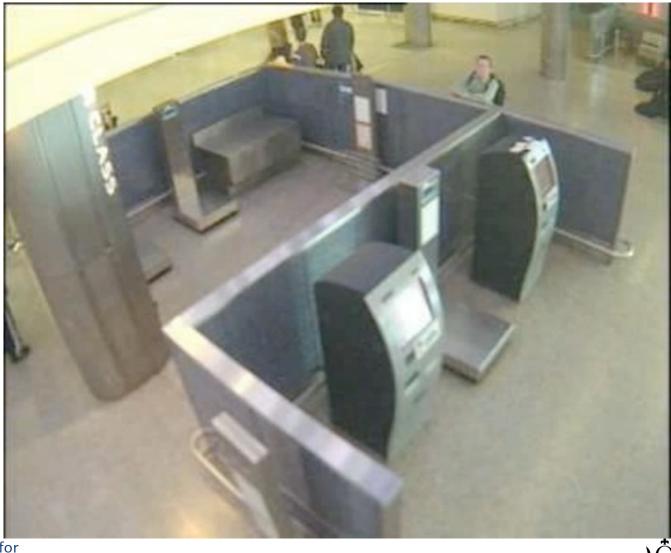


- · We can also use attributes for sparse data learning
  - E.g., in re-identification.





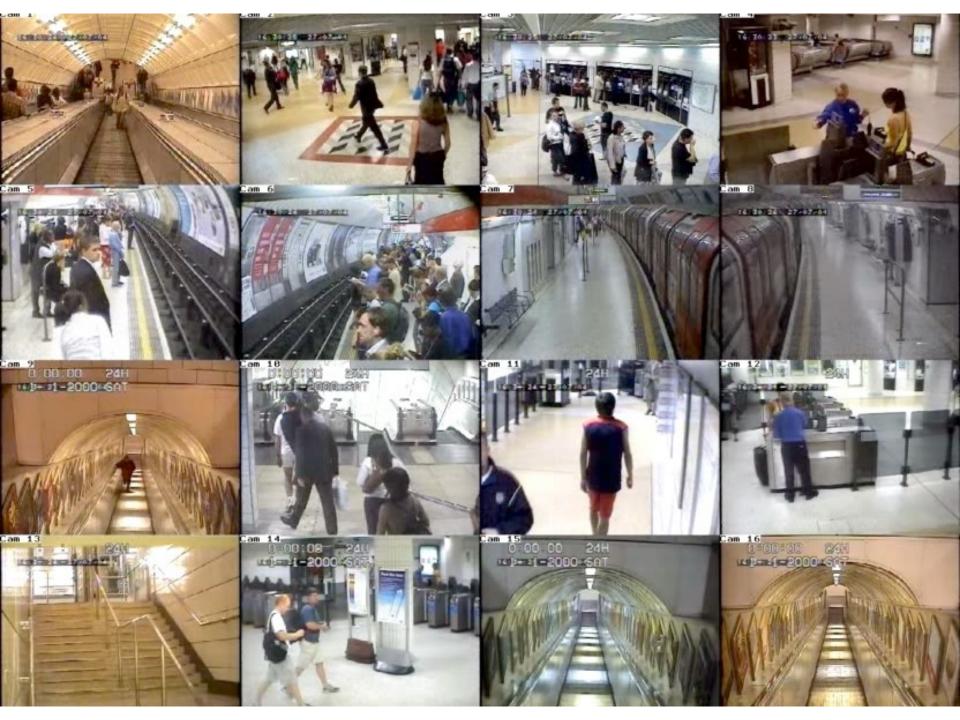
### More on attributes: Re-identification







[BMVC'12,ECCV'12]



Aim: Re-identify across time, space and view

Solution?

Learn a recognizer

Challenge:

- Statistical Insignificance
- · (One-shot learning)
- Huge intra-class variability



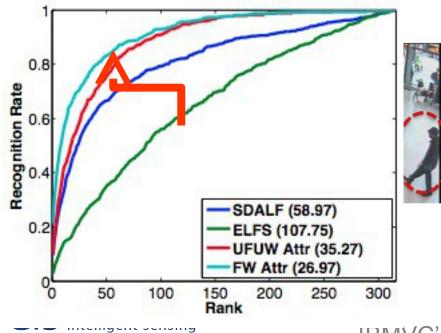




## More on attributes: Re-identification

# Aim: Re-identify across time, space and view

#### Solution: Attribute Transfer



#### Target Person

- 🖌 Hat
- 🗴 Jeans
- 🖌 Male
- 🖌 Coat
- 🗴 Skirt
- 🗴 Tie
- 🗴 Sandals
- 🗴 Shorts
- Leverage lifetime of (attribute) experience



[BMVC'12,ECCV'12]

#### Sparse-data and re-identification



What if we have a lot of data but not much supervision?

· Active Learning





## Outline

٠

٠

٠

#### **Intelligent Sensing**

- Data Fusion
- Data and annotation efficiency
  - Unsupervised
  - Weakly-supervised
  - Semi-supervised
  - Multi-label/multi-instance
  - Zero-shot learning

### **Observation** efficiency

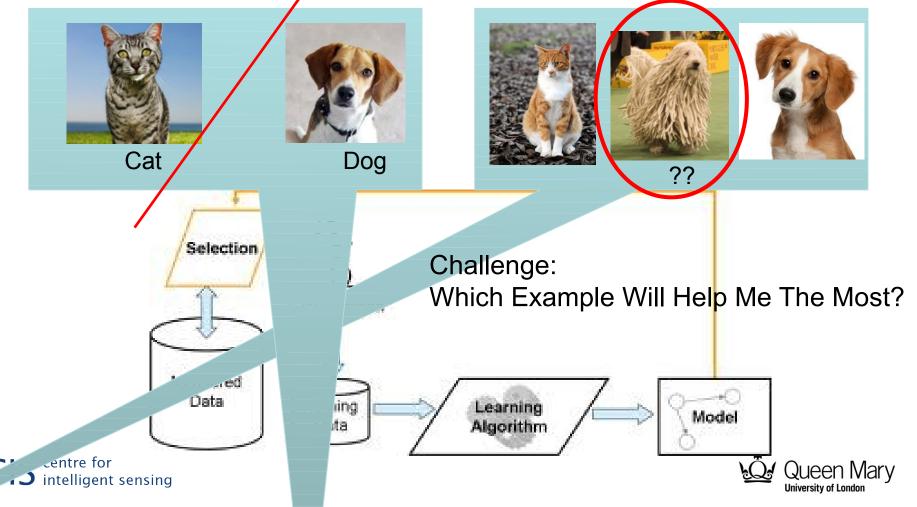
- Active learning





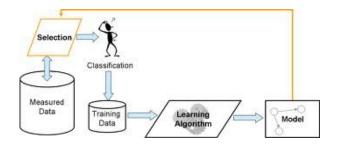
### **Active Learning**

#### Aim: Make query selection optimal → Minimize human annotation effort for given outcome



Aim: Make query selection optimal → Minimize human annotation effort for given outcome

Challenge: How to do in a new domain with unknown class space? Tractability?







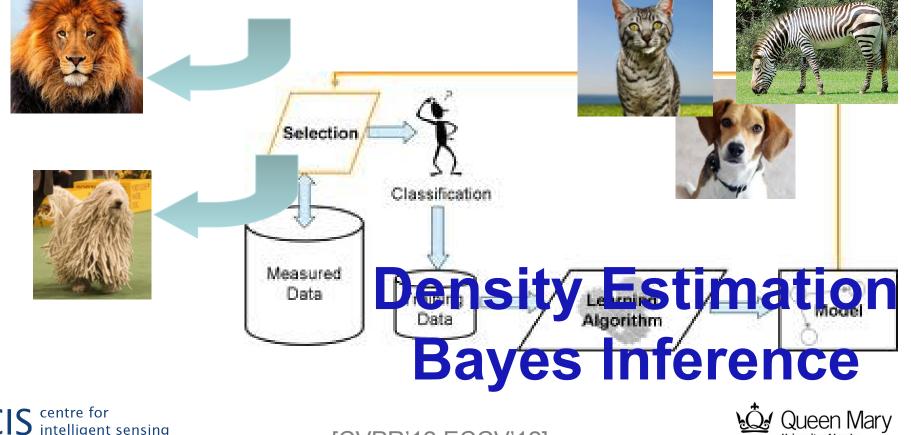


[CVPR'12, ECCV'12]

## **Active Learning & Discovery**

#### Solution:

- Bayesian non-parametrics
  - Incremental Computation



[CVPR'12, ECCV'12]

University of London

#### **Active Learning & Discovery**







## Take Homes

٠

٠

•

- Be aware of the underlying ML of your intelligent sensing problem
  - Then you can find good techniques
- Separation of:
  - features, objectives, model/representation, optimizers
- Think of your data and annotation constraints
  - Can they be reduced to make your model more useful?
  - How does it depend on the strength of your annotation?
  - Could your model do better with more data (but same annotation?)
  - Would finding the right annotations help?



