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Intelligent Sensing?

measuremen
t

inference

Challenges:
• Ill posed
• How to constrain the 

parameters?
• Resolve conflicts



Intelligent Sensing?

Intelligent Sensing
• How to resolve different sources of data?
• How to solve ill-posed problems?
• How to not start from scratch every time?
• How to make the right measurements?



Outline

Intelligent Sensing
• Data Fusion
• Data and annotation efficiency

– Unsupervised
– Weakly-supervised
– Semi-supervised
– Multi-label/multi-instance
– Zero-shot learning

• Observation efficiency
– Active learning



Notation

• Unsupervised Learning
– Observe {x}, model p(x)
– Observe {x}, model p(x,y)

• Supervised Learning
– Observe {x,y}, model p(x,y)

x

x

x

y

y



Machine Learning

Classic Problems:

• Inference 

• Marginal Likelihood

• ML Learning, 
– Density Estimation

• EM Learning

• Model Selection

x xx

y y

p(y | x) = p(x | y)p(y) / p(x)
p(x) = p(x, y)dy∫
ˆθ = argmax p(X |θ )

ˆθ = argmax p(X,Y |θ )dY∫
M = argmax p(X,Y,θ |M )p(M )dY dθ∫



Multisensory perception

• Fusion and Data Association



Fusing Multiple Data Sources

Optimal fusion depends on 
reliability of each modality

But how do you know the
reliability of your senses?

p(x | xa, xv ) ∝ p(xa, xv | x)p(x)

= p(xa | x)p(xv | x)p(x)



Fusing Multiple Data Sources

[IJCAI’07, PAMI’08]

Aim: Given an audio-visual stream
Learn the user’s appearance & sound
Learn the microphone and camera characteristics
Fuse appearance and sound info for optimal localization

Challenges:
No supervision
(No background subtraction)
Real-time inference



Fusing Multiple Data Sources

[IJCAI’07, PAMI’08]



Fusion without correspondence?



Multiple Data Sources?

[IJCAI’07, PAMI’08]



Fusion without correspondence?

[IJCAI’07, PAMI’08]

EM Learning
Model Selection



Multisensory perception

• Abnormality Detection



Human Multisensory Oddity detection

Hillis et al, Science, 2002
Banks et al, Nature, 2002 

Optimal Fusion

People (eventually) 
notice this



Human Multisensory Oddity detection

[ PLOS’09, OUP’11 ]

Marginal Likelihood
Model Selection



Data Fusion
• Optimally integrating multiple sensors
• Resolving multi-sensor data association



Outline

Intelligent Sensing
• Data Fusion
• Data and annotation efficiency

– Unsupervised
– Weakly-supervised
– Semi-supervised
– Multi-label/multi-instance
– Zero-shot learning

• Observation efficiency
– Active learning



Unsupervised learning

• Video Surveillance: Anomaly Detection & Clustering



Unsupervised Learning / Surveillance

• Aim: Given a video stream
– Get domain knowledge by learning about activities
– Detect abnormal behaviors as outliers against the model

• Challenges:
– No tracking
– No camera calibration
– No supervision
– Complex behaviors
– Real-time

[ICCV’09, IJCV’11]



New generative model… 

“Markov Clustering Topic Model”

Input Flow Vectors

Learned Behaviors

Learned Actions

Learned Dynamics

Unsupervised / Surveillance: MCTM



Unsupervised / Surveillance: MCTM Learning



Profiling: Behaviours & AbnormalitiesUnsupervised / Surveillance: MCTM: Abnormality

[ICCV’09, IJCV’11]

EM Learning
Inference

Marginal Likelihood

p(x) = p(x, y)dy∫
p(y | x)



Unsupervised Learning

• What if you have seen a few known (but rare) 
behaviors you want to detect?
– E.g., surveillance

• These may also be subtle



Weakly Supervised Learning / Surveillance

• Aim: Given a video stream
– Learn a detector for a rare and subtle behavior

• Challenge
– Use only weak annotation
– Sparse training data
– No tracking
– Real-time

• View as hard multi-instance learning (MIL) problem

[ACCV’10, PAMI’11]



1 Example Each

Example Challenge

100 Examples

WSL / Surveillance: Rare Events

[ACCV’10, PAMI’11]



WSL / Surveillance: WSJTM

Classify: Compute p(C|X)
Ø Bayesian Model Selection

Ø Variational Importance 
Sampler

Locate: Infer p(Y|X,C)
Ø Gibbs



WSJTM Classifier: Trained with Weak and Sparse Labels

WSL / Surveillance: WSJTM: Results

[ACCV’10, PAMI’11]

EM Learning
Model Selection



Weakly Supervised Learning

• What if you need more than one label per instance?
– E.g., multi-media indexing.

• The weak supervision problem gets harder…



Weakly Supervised Multi Label: Tagging

• Aim: Learn video annotation model from tags
– Online video databases: Sports news

Learning

Annotation:
Baseball

Annotation:
Baseball, Soccer

Annotation:
Baseball, Soccer, Volleyball

Test Data

Tags

[ICDM’11]



Weakly Supervised Multi Label: Tagging

• Challenges:
– Weak annotation
– Multiple labels per instance
– Huge intra-class variability

Learning

Test Data

Tags

[ICDM’11]



Weak/Multi Label: VTT model

• Topic Model, e.g., LDA.
– Density estimate for discrete 

data corpus  p(X)
• Our VTT model

– Joint estimate for data and 
tags p(X,Y)

– Permits annotation p(y|x)
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Annotation:
Baseball, 
Soccer, 

Volleyball

Foreground e.g., jumping, kicking
Background e.g., clapping, running

[ICDM’11]



Weakly Supervised Multi Label: Results



Weakly Supervised Multi Label: Insight

• Foreground Topics
– Shared, e.g., running
– Specific, e.g., pitching

[ICDM’11]

EM Learning
Inference



Weakly Supervised / Multi Label Learning

• Can we lean anything with no new data at all?
– (Classification)



Zero-Shot Attribute Learning / Tag & Classify

• Aim: Given a set of Tags & Classes
– Learn how to tag
– Learn how to relate tags to classes
– Zero-shot learning from tag description



Zero-Shot Learning (Look Mum! No Data!)

Stripes, Herbivore, Tail, Claws
Zebra Lion:= Stripes, Herbivore, Tail, Claws

Lion!



Zero-Shot Learning (Look Mum! No Data!)

Stripes, Herbivore, Tail, Claws
Zebra

Candles, Cake, Clapping, Dancing
Birthday Party

Lion:= Stripes, Herbivore, Tail, Claws

Lion!

Wedding Dance:= Candles, Cake, 
Clapping, Dancing



Zero-Shot Learning (Look Mum! No Data!)

Stripes, Herbivore, Tail, Claws
Zebra

Candles, Cake, Clapping, Dancing
Birthday Party

Wedding Dance:= Candles, Cake, 
Clapping, Dancing

Lion:= Stripes, Herbivore, Tail, Claws

Lion!

Wedding
Dance!



Latent Attribute Learning

• Aim: Given a set of Tags & Classes
– Learn how to tag
– Learn how to relate tags to classes
– Zero-shot learning from tag description

• Challenge: Reduce human effort
– Avoid annotating every attribute on every training image
– Avoid specifying every attribute on every new class

[ECCV’12]



Stripes, Herbivore, 
Tail, Claws

Lion
Zebra

Teeth, Furry,
Eats Grass

Stripes, Herbivore, 
Tail, Claws

Teeth, Furry,
Eats Grass

Latent Attribute Learning

[ECCV’12]
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Stripes, Herbivore, 
Tail, Claws

Lion
Zebra

Teeth, Furry,
Eats Grass

Stripes, Herbivore, 
Tail, Claws

Teeth, Furry,
Eats Grass

Latent Attribute Learning

[ECCV’12]

Latent Attributes: 
• Less annotation work
• Increased Classification Accuracy

• Conventional
• Zero-shot

Bear := Eat Fish,
Claws, Tail

Teeth, Furry,
Eats Grass

EM Learning



Zero-shot learning

• We can also use attributes for sparse data learning
– E.g., in re-identification.



More on attributes: Re-identification

[BMVC’12,ECCV’12]



More on attributes: Reidentification



More on attributes: Re-identification

Aim: Re-identify across time, 
space and view

Solution?
• Learn a recognizer

Challenge:
• Statistical Insignificance
• (One-shot learning)
• Huge intra-class variability

[BMVC’12,ECCV’12]



More on attributes: Re-identification

Aim: Re-identify across time, 
space and view

Solution: Attribute Transfer

• Target Person
– ✔ Hat
– ✗  Jeans
–  ✔ Male
–  ✔ Coat
–   ✗ Skirt
–   ✗ Tie
–   ✗ Sandals
–   ✗ Shorts

• Leverage lifetime of 
(attribute) experience

[BMVC’12,ECCV’12]



Sparse-data and re-identification

What if we have a lot of data but not much supervision?
• Active Learning



Outline

Intelligent Sensing
• Data Fusion
• Data and annotation efficiency

– Unsupervised
– Weakly-supervised
– Semi-supervised
– Multi-label/multi-instance
– Zero-shot learning

• Observation efficiency
– Active learning



Active Learning

Cat Dog
??

Aim: Make query selection optimal
Minimize human annotation effort for given outcome

Challenge:
Which Example Will Help Me The Most?



Active Learning & Discovery

Aim: Make query selection optimal
Minimize human annotation effort for given outcome

Challenge:
How to do in a new domain with unknown class space?
Tractability?

[CVPR’12,ECCV’12]



Active Learning & Discovery

Solution: 
• Bayesian non-parametrics
• Incremental Computation 

[CVPR’12,ECCV’12]

Density Estimation
Bayes Inference



Active Learning & Discovery



Take Homes

• Be aware of the underlying ML of your intelligent sensing 

problem
– Then you can find good techniques

• Separation of:
– features, objectives, model/representation, optimizers

• Think of your data and annotation constraints
– Can they be reduced to make your model more useful?

– How does it depend on the strength of your annotation?

– Could your model do better with more data (but same annotation?)

– Would finding the right annotations help?
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