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ABSTRACT

The ego-noise generated by the motors and propellers of a micro

aerial vehicle (MAV) masks the environmental sounds and con-

siderably degrades the quality of the on-board sound recording.

Sound enhancement approaches generally require knowledge of

the direction of arrival of the target sound sources, which are dii-

cult to estimate due to the low signal-to-noise-ratio (SNR) caused

by the ego-noise and the interferences between multiple sources.

To address this problem, we propose a multi-modal analysis ap-

proach that jointly exploits audio and video data to enhance the

sounds of multiple targets captured from an MAV equipped with

a microphone array and a video camera. We irst perform audio-

visual calibration via camera resectioning, audio-visual temporal

alignment and geometrical alignment to jointly use the features

in the audio and video streams, which are independently gener-

ated. The spatial information from the video is used to assist sound

enhancement by tracking multiple potential sound sources with a

particle ilter. Then we infer the directions of arrival of the target

sources from the video tracking results and extract the sound from

the desired direction with a time-frequency spatial ilter, which

suppresses the ego-noise by exploiting its time-frequency sparsity.

Experimental results with real outdoor data verify the robustness

of the proposed multi-modal approach for multiple speakers in

extremely low-SNR scenarios.

KEYWORDS

audio-visual sensing; ego-noise reduction; micro aerial vehicles; mi-

crophone array; multi-modal localization; enhancement of multiple

sound sources; multiple object tracking

1 INTRODUCTION

Multi-rotor micro aerial vehicles (MAV) with audio sensing capa-

bilities could localize, recognize and enhance the sound emitted

from an aerial or ground object [1, 16, 20, 35]. However, a strong

ego-noise is generated by rotating motors and propellers, which
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are closer to the on-board microphones than ground or aerial tar-

get sources [24]. The strong ego-noise leads to an extremely low

signal-to-noise ratio (e.g. SNR < -15 dB), which masks the target

sounds. By exploiting the spectral and spatial characteristics of the

acoustic signals, microphone-array algorithms can suppress the

ego-noise and enhance the target sounds [25]. However, to steer

the spatial ilter, these algorithms typically require the direction

of arrival (DOA) of the target sound, which is diicult to estimate

from the microphone signal due to the extremely low SNR, the non-

stationarity of the ego-noise, and multiple active sound sources.

While video-assisted sound enhancement has already been inves-

tigated [14, 22, 30], existing works address indoor environments

and static audio-visual sensors. To the best of our knowledge, our

work is the irst to combine audio and visual modalities for the

challenging problem of sound enhancement from an MAV.

In this paper, we integrate the audio and visual modalities to en-

hance target sounds captured by an array of microphones mounted

on an MAV. We irst synchronize the audio and video streams and

geometrically align the spatial information estimated from the two

streams. We then robustly estimate the position of potential sound-

emitting objects (e.g. human speakers) from the video stream. Fi-

nally, we design a time-frequency spatial ilter which, based on the

location provided by the video, extracts the target sound from the

audio streams captured by multiple microphones. By exploiting the

complementarity of the two modalities, the proposed audio-visual

sensing system works in extremely low SNR scenarios and can

isolate, track and enhance the sounds from a time-varying number

of speakers. A demonstration of the results is available online 1

The paper is organized as follows. Sec. 2 reviews the related work.

Sec. 3 formulates the problem. Sec. 4 describes the audio-visual

calibration procedure. Sec. 5 presents the proposed video-assisted

sound enhancement method. Experimental results are discussed in

Sec. 6 and conclusions are drawn in Sec. 7.

2 RELATED WORK

The ego-noise of a lying MAV leads to extremely low SNRs, non-

stationarity and varying dynamics. These are considerable chal-

lenges for noise reduction and sound source localization algorithms.

Beamforming is a widely-used microphone-array technique,

which enhances the sound from a speciic direction by coherently

delaying and summing the microphone signals based on the trans-

mitting delays from the sound source to the microphones [9]. The

performance of a ixed beamformer is usually limited by the size of

the microphone array and the number of the microphones. Blind

1http://cis.eecs.qmul.ac.uk/projects/multimodalmav/
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source separation (BSS) has recently been used for ego-noise re-

duction [24]. BSS treats the target and noise signals equally and

separates the individual sources from the mixed signals captured by

the microphone array [23]. The application of BSS to MAV-based

ego-noise reduction is straightforward as the locations of the micro-

phones and the target sources are not needed. However, BSS sufers

from the inherent permutation ambiguities, which are diicult to

address in low-SNR scenarios [29].

Time-frequency spatial iltering has emerged recently for MAV

sound enhancement [25]. Based on the observation that the ego-

noise and the target sound usually have concentrated energy at

sparsely isolated time-frequency bins, the time-frequency approach

estimates the DOA of the sound at each bin and then combines the

localization results from all the bins for noise reduction. While the

time-frequency approach can suppress the ego-noise efectively,

similarly to beamforming, the design of the spatial ilter also re-

quires the DOA of the sound.

Classical microphone-array sound source localization approaches

include steered response power (SRP) and multiple signal classi-

ication (MUSIC) [28, 29]. The performance of both approaches

degrades signiicantly in low-SNR scenarios [15]. Recently, it was

proposed that combining time-frequency spatial iltering with a

kurtosis measure would lead to noise-robust sound source localiza-

tion [26]. However, this approach assumes a single target and thus

cannot handle a multi-source scenario.

Video-based object detection and tracking can provide spatial

information about the objects in the ield of view of the camera.

Features used to represent object models include intensities [3, 5, 6],

edges [3, 6] and textures [31]. The performance of these models

can be compromised in challenging scenarios with low contrast or

crowds. Color attributes can be used as an explicit color representa-

tion [10] and inter-object occlusions can be used as clues to improve

the detection of partly occluded objects [7]. Recently, deep learning

techniques have been proposed where image regions with objects

of interest produce a high response of a pool of ilters [18, 32, 33].

Multi-object trackers can estimate the trajectory of the targets

by temporally associating sets of noisy detections generated at

each frame. This association compensates for false-positive and

false-negative detections using spatio-temporal relationships [2, 17].

The probability hypothesis density (PHD) ilter [11, 12] estimates

the state of multiple targets by building a positive and integrable

function over a multi-dimensional state, usually known as poste-

rior. This probabilistic ilter can cope with clutter, spatial noise

and missing detections while efectively iltering the state estima-

tion using current and past information only. The posterior can

be estimated using Bayesian recursion. As this iterative process

is computationally intractable, the irst order posterior function

can be approximated using a sequential Monte Carlo method with

weighted samples. This approximation is known as probability hy-

pothesis density particle ilter (PHD-PF) [21] and the weighted

samples are known as particles.

3 PROBLEM FORMULATION

Fig. 1 depicts the audio-visual sensing platform consisting of a

circular microphone array and a camera mounted on the MAV. The

microphone array is placed on top of the MAV in order to avoid
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Figure 1: The audio-visual sensing platform consisting of a

microphone array and a camera mounted on the MAV. (a)

Side and (b) top view of the real object. (c) 3D and (d) 2D ge-

ometrical representation.

the inluence of the wind from the propellers. The microphone

array contains M = 8 microphones whose signals are sampled

synchronously with a multichannel analogue-to-digital converter.

The center of the camera overlaps that of the microphone array

to ease audio-visual calibration. The audio and video acquisition

devices work independently of each other.

Fig. 2 illustrates the coordinate systems of the microphone array

and the camera. We use the pinhole model for the camera [36]. A

real-world object P is projected onto the image plane p, withOC ,

O I and F being the center of the camera, the principal point (center)

in the image and the focal length, respectively. We only consider

the DOA of the sound on the 2D horizontal plane. The horizontal

angles of the object with respect to the microphone array and the

camera are indicated as θa and θv , respectively.

We consider an unknown number of speakers, N , who might

talk or remain silent in front of the camera. The locations of the

microphones are known to be R = [r1, . . . ,rM ], where rm =

[rmu , rmv ]
T is the location of them-th microphone. The superscript

(·)T denotes the transpose operator. The video I = {Ik }
K
k=1

, where

Ik is the k-th frame and K is the total number of video frames, has

frame rate fc . The microphone signal x(n) = [x1(n), . . . ,xM (n)]T

contains the sound from the N speakers and the ego-noise, i.e.

x(n) =

N∑

j=1

s j (n) +v(n), (1)

where s j (n) = [s1j (n), . . . , sMj (n)]
T denotes the sound from the

j-th speaker,v(n) = [v1(n), . . . ,vM (n)]T denotes the ego-noise and

n is the digital audio sequence index.

We aim to design a set of spatial ilters {w1(n), · · · ,wN } that can

extract the N target sounds from the noisy microphone recordings,

yj (n) = w j (n) ∗x(n) =

M∑

i=1

LP∑

p=1

w ji (p)xi (n−p), j = 1, · · · ,N (2)
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Figure 2: Schematic illustration of the coordinate systems

of the microphone array and the camera (pinhole model).

The 3D position P of a real-world object is projected on the

image plane as p. θa and θv are the angles, on the 2D hori-

zontal planes, of the object with respect to the microphone

array and the camera.OM andOC are the centers of the mi-

crophone array and camera, respectively,O I = (u0,v0) is the

principle point (center) of the image and F is the focal length

of the camera.

where w j = [w j1(n), · · · ,w jM (n)] denotes the spatial ilter corre-

sponding to the j-th target, LP is the length of the ilter, and the

operator ‘∗’ denotes the spatial iltering procedure [23].

The proposed work can be decomposed into three elements,

namely, audio-visual calibration (Sec. 4), visual object detection

and tracking (Sec. 5.1), and spatially informed audio enhancement

(Sec. 5.2). The irst step calibrates the locations of the camera andmi-

crophones and aligns the audio and video streams so that they can

be correctly associated. The second step works on the video stream

by estimating the location of potential sound emitting objects. The

third step works on the audio stream by designing a time-frequency

spatial ilter to enhance the sound from the video-informed di-

rections. The block diagram of the proposed multi-modal source

localization and sound enhancement pipeline is shown in Fig. 3.

4 AUDIO-VISUAL CALIBRATION

Calibration of the microphone array and the camera is needed so

that the features from the audio and video streams can be jointly ex-

ploited. The calibration procedure consists of camera resectioning,

audio-visual temporal alignment and geometrical alignment.

4.1 Camera resectioning and audio-visual
temporal alignment

To compensate for the deformation produced by the lens and to

infer the real-world location of objects from the image, we use

camera resectioning to estimate the intrinsic and distortion parame-

ters [8, 36]. We irst record a calibration video of a checkerboard at
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Figure 3: Block diagram of the proposedmulti-modal source

localization and sound enhancement pipeline, which con-

sists of three main steps: audio-visual (AV) calibration, vi-

sual object detection and tracking, and spatially informed

audio enhancement.

diferent locations and then estimate the camera parameters with

the MATLAB Camera Calibration Toolbox [13]. The radial and tan-

gential lens distortion parameters are represented by ξ and the

intrinsic matrix is deined as

K =



Fu cs u0
0 Fv v0
0 0 1


, (3)

where F = Fu+Fv
2 is the camera focal length measured in pixels

(see Fig. 2), u0 and v0 indicate the location of the principle point

(optical center) in the image, and cs is the skew axis coeicient. The

parameter K will be used in Sec. 4.2 for audio-visual geometrical

alignment.

The parameter ξ is used to undistort the frames as

Īk = D(Ik , ξ ), (4)

where D(·) represents the undistortion procedure [8].

We then estimate the unknown time ofset between the micro-

phone array and the video camera, δav , to temporally align the

audio and video streams. As our camera has its own built-in micro-

phone, we only need to detect the time ofset between the audio

sequences from the array microphone and the camera microphone.

We present a calibration sound (e.g. clapping) to estimate the ofset

between the two audio sequences.

If we represent the two segments of sequences as sa (n) and sv (n),

where n ∈ Nc , both containing the calibration sound, then the time

ofset δav is determined by maximizing the correlation between

the two segments:

δav = argmax
δ ∈[δL ,δH ]

∑

n∈Nc

sa (n)sv (n − δ ), (5)

where δL and δH denote predeined minimum and maximum de-

lays, respectively. The parameter δav will be used in Sec. 5.2 when

temporally associating the spatial information from audio and video

streams.

4.2 Audio-visual geometrical alignment

When an object emits a sound, the angle on the 2D microphone ar-

ray plane (i.e. its DOA) can be estimated from the microphone-array

signals or from the visual signal, e.g. θa and θv in Fig. 2. Since the



microphone array and the video camera have their own coordinate

systems, it is important to know the relationship between the θa
and θv to infer the DOA of the sound from the corresponding object

in the image.

If the camera and the microphone array are placed with their

centers and coordinates aligned (see Fig. 2), θa should be equal to θv .

However, it is diicult to satisfy this condition by mounting the two

devices on the MAV manually. We address this displacement error

numerically, assuming that these two DOAs are linearly related as

θa = a1θv + a2, (6)

where a = [a1,a2]
T are unknown constants.

To estimate a1 and a2, we record the sound from a speaker at Q

diferent locations with both the microphone array and the camera

while the MAV is muted. Let us use the sound from the q-th location

as an example. For the audio, the DOA of the sound, θ
q
a , can be

estimated from the microphone signal with the classical SRP-PHAT

algorithm [26]. For the video, we manually label the sound emitting

point (speaker’s mouth) in the image, e.g. pq = (uq ,vq ), and then

estimate the DOA as

θ
q
v = arctan

(uq
F

)
. (7)

We estimate the DOAs of the speaker from the audio as θa =

[θ1a , . . . ,θ
Q
a ]T and from the video as θv = [θ1v , . . . ,θ

Q
v ]T. The pa-

rameter a can be estimated from θa and θv using least-square

itting. This parameter will be used in Sec. 5.2 when a sound event

in the audio and video streams is geometrically associated.

5 VIDEO-ASSISTED SOUND ENHANCEMENT

5.1 Visual object detection and tracking

As the video information is not afected by the strong ego-noise, we

propose to exploit this modality to obtain the spatial information

of the objects which potentially emit sound, e.g. a person. We irst

detect people in each frame and then track their location over time

with a multiple-object tracker.

For person detection, we employ the Aggregate Channel Features

(ACF) algorithm [5], a supervised object detector which can robustly

detect quasi-rigid objects from images, e.g. faces, pedestrians or cars.

In each undistorted video frame Īk , the object detector generates a

set of candidate detections represented as Dk = {di
k
}
|Dk |
i=1 , where

|·| indicates the cardinality operator. Each individual detection can

be represented as

di
k
=

(
ui
k
,vi

k
,wi

k
,hi

k

)
, (8)

where (ui
k
,vi

k
) is the center, (wi

k
,hi

k
) are the width and height of

the detection on the image plane, respectively, and i ∈ [1, |Dk |] is

the detection index. These detections can be inaccurate, generating

false-positive or false-negative errors, and do not have any identity

information.

For object tracking, we employ the early association probabil-

ity hypothesis density particle ilter (EA-PHD-PF) [19], which es-

timates the trajectory of multiple objects from noisy detections.

Through four processing steps (i.e. prediction, early association,

update and resampling) for each undistorted video frame Īk , the

algorithm approximates a state probability function using a set of

particles Ek =
{
Ûei
k

} |Ek |
i=1

, where each particle Ûei
k
= {λi

k
,π i

k
,ei

k
} is

associated to the identity information λi
k
, the posteriori probability

π i
k
, and the state information

ei
k
=

(
u λ̃
k
,v λ̃

k
, Ûu λ̃

k
, Ûv λ̃

k
w λ̃
k
,hλ̃

k

)

λ̃=λi
k

(9)

where u λ̃
k
,v λ̃

k
,w λ̃

k
,hλ̃

k
are deined similarly as in Eq. 8 and Ûu λ̃

k
and

Ûv λ̃
k
are the horizontal and vertical velocities, respectively, and λi

k
∈

{1, · · · ,Λk } where Λk is the number of identities that are detected

by the tracker. Finally, the state of each target with identity λ is

estimated as

eλ
k
=

1
∑
i π

i
k

∑

i

π i
k
ei
k
, (10)

where i ∈ I
λ̃
and Iλ denotes a set of indexes with λi

k
= λ̃.

Based on Fig. 2, the DOA of each identiied object in the frame

Īk is estimated as

θλ
vk
= arctan

(
uλ
k

F

)

, λ = 1, · · · ,N , (11)

where N = Λk , and F is the focal length obtained as in Sec. 4.1.

5.2 Spatially informed audio enhancement

Given the potential sound emitting objects detected by the video

tracker, we could design a set of spatial ilters to extract the sounds

from those visually informed directions. This is a challenging task

due to the existence of strong ego-noise with extremely low SNR, e.g.

< -15 dB. For this aim, we employ a time-frequency (T-F) spatial il-

tering, a recently emerged MAV sound enhancement approach [25].

This approach can extract the sound from the desired DOA from

the strong ego-noise by exploiting the time-frequency sparsity of

the acoustic signals. The visually-informed audio enhancement

approach consists of ive steps.

In the irst step, we geometrically transform the video trajectory

of each potential sound source, Θλ
vk
=

{
θλ
vk

}K
k=1

, to the audio

reference system as

θλ
ak
= a1θ

λ
vk
+ a2, (12)

where a1 and a2 are the geometrical alignment parameters obtained

in Sec. 4.2.

Second, we transform the time-domain signal x(n) into the time-

frequency domain asx(ω, l) via short-time Fourier transform (STFT)

with frame length Nω and shift size Ns =
Nω

2 , where ω and l are

the frequency and audio frame indexes, respectively.

Suppose we have a segment of signal l ∈ [lb , le ], corresponding

to a time segment of n ∈ [nb ,ne ] where nb = lbNs and ne = leNs .

The DOA of the target sound in this segment is estimated as the

median value among all video-informed estimates, i.e.

θd = median
{
θλ
ak

}

k ∈[(nb+δav )/fc ,(ne+δav )/fc ]
, (13)

where δav is the time ofset between the audio and video streams,

as obtained in Sec. 4.1.



Third, given the microphone signal x(ω, l) and location of the

microphones R, we build a spatial likelihood function

γTF(ω, l ,θ ) =

R




M∑

m1,m2=1
m1,m2

xm1 (ω, l)x
∗
m2

(ω, l)

|xm1 (ω, l)xm2 (ω, l)|
ej2π fωτ (m1,m2,θ )




, (14)

where the superscript (·)∗ denotes complex conjugation, the op-

erator R{·} denotes the real component of the argument, and

τ (m1,m2,θ ) =
∥rm2−r θ ∥−∥rm1−r θ ∥

c denotes the time diference of

arrival between the sound at two microphonesm1 andm2, and c

denotes the sound velocity in the air. The term ej2π fωτ (m1,m2,θ )

is the inter-channel phase diference theoretically computed with

the delay τ ; the term
xm1 (ω,l )x

∗
m2

(ω,l )

|xm1 (ω,l )xm2 (ω,l ) |
is the inter-channel phase

diference measured from xm1 and xm2 . The spatial likelihood γTF is

high when these two inter-channel phase diferences are consistent

with each other. The DOA can thus be estimated as

θTF(ω, l) = argmax
θ ∈(−180◦,180◦]

γTF(ω, l ,θ ). (15)

Fourth, we detect the time-frequency bins that belong to the

target sound, assuming that the time-frequency bins belonging to

the target sound have their DOA estimates normally distributed

around the mean θd , with standard deviation σd . The detection is

performed by measuring the closeness of each time-frequency bin

to the target sound:

cd (ω, l ,θd ) = exp

(

−
(θTF(ω, l) − θd )

2

2σ 2
d

)

, (16)

where cd (·) ∈ [0, 1]. The higher cd (·), the higher the probability

that the (ω, l)-th bin is dominated by the target sound. We then

calculate the correlation matrix of the noisy microphone signal and

of the target sound, i.e.

Φxx (ω, l ,θd ) =
1

le − lb + 1

le∑

l=lb

x(ω, l)xH(ω, l), (17)

Φss (ω, l ,θd ) =
1

le − lb + 1

le∑

l=lb

c2
d
(ω, l ,θd )x(ω, l)x

H(ω, l), (18)

where the closeness measure cd (ω, l ,θd ) indicates the contribution

of the (ω, l)-th bin to the correlation matrix, and the superscript

(·)H denotes the Hermitian transpose. Given this estimated target

correlation matrix, an adaptive beamformer can be formulated

easily. We use the multichannel Wiener ilter [4]

wTF(ω, l ,θd ) = Φ
−1
xx (ω, l)ϕss1(ω, l ,θd ), (19)

where ϕss1(ω, l ,θd ) is the irst column of Φss (ω, l ,θd ). The sound

coming from θd is extracted as

yTF(ω, l ,θd ) = w
H
TF(ω, l ,θd )x(ω, l). (20)

Finally, we transform yTF(ω, l ,θd ) in the time-frequency back to

the time domain, obtaining yTF(n,θd ), i.e. we can extract the sound

from N potential speakers sequentially and represented them as

y1(n), · · · ,yN (n).
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Figure 4: Experimental setup illustrating the projection of

the position of the MAV on the ground (red circle) and the

nine landmarks (black circles).

6 EVALUATION

6.1 Experimental setup

Dataset. We built a prototype that is composed of a 3DR Iris quad-

copter, a GoPro camera, and a microphone array (Fig. 1). We used

this prototype to record two datasets: the evaluation and the demon-

stration dataset. Fig. 4 depicts the recording setup, where people

move among nine predeined landmarks in a park and the MAV is

ixed on a tripod. In the evaluation dataset, we record the ego-noise

and the speech separately in order to investigate the performance

comprehensively. When recording the ego-noise, the MAV operates

at 50%, 100% and 150% of the power level at hovering state. When

recording the clean speech, we have two people moving randomly

along the landmarks. At each location, they talk sequentially for

about 40 s each and then move simultaneously to their next location.

We mix the two speech signals and the ego-noise to generate the

microphone signal. In the demonstration dataset, we record the

ego-noise and the speech simultaneously. We have three people

moving along the landmarks randomly. At each location, the three

people randomly choose to talk alone or simultaneously, each for

about 10 s, and then simultaneously move to their next location.

The MAV operates at the power level of hovering state during the

whole recording.

Algorithms for comparison. We compare the proposed multi-

modal (audio-visual) method, which steers the time-frequency spa-

tial ilter at the directions provided by the visual module, against a

mono-modal (audio-only) method, which estimates the direction of

the sound from the microphone signal [26] and then steers the time-

frequency spatial ilter at it. In addition, we compare time-frequency

iltering with a traditional delay-and-sum beamformer [25].

Implementation details and parameters. The GoPro camera

is set to record at a wide ield of view, at 1920x1080 resolution and

fc = 30 Hz. The audio processing employs a segment-wise process-

ing scheme, which divides the audio signals into non-overlapped

segments of 6 s long and processes them sequentially. The STFT

frame length is set to 1024 with half overlap. The standard deviation

in (16) is set to σd = 10◦.

Evaluationmeasures.We are interested in evaluating the noise

reduction performance in terms of signal-to-noise ratio (SNR),

the separation between competing speakers in terms of signal-to-

interference ratio (SIR) [27], and also the enhanced speech quality

in terms of Perceptual Evaluation of Speech Quality (PESQ).



Given a spatial ilter w(n) and the microphone signal x(n) =∑N
λ=1

sλ(n) +v(n) with its constituent components assumed to be

known, the spatial iltering output can be written as

y(n) = w(n) ∗ x(n) =

N∑

λ=1

w(n) ∗ sλ(n) +w(n) ∗v(n)

=

N∑

λ=1

ysλ (n) + yv (n).

(21)

The SNR and SIR for the λ-th source are calculated in target-sound-

active periods Nsλ as

SNRλ = 10 log10

∑
n′∈Nsλ

y2sλ (n
′)

∑
n′∈Nsλ

(
y2v (n

′) +
∑
λ′,λ y

2
sλ′

(n′)
) , (22)

SIRλ = 10 log10

∑
n′∈Nsλ

y2sλ (n
′)

∑
n′∈Nsλ

(∑
λ′,λ y

2
sλ′

(n′)
) . (23)

Finally, PESQ ∈ [0, 4.5] is a widely-used measure to assess the over-

all quality of the processed speech se (n) relative to the referenced

clean speech so (n) [34]. The higher PESQ, the better the speech

quality. We represent the PESQ operator as Q{se , so }. The PESQ

of the λ-th source is calculated by comparing the enhanced signal

ysλ (n) with the clean signal in the irst microphone s1λ(n), i.e.

PESQλ = Q{ysλ , s1λ }. (24)

6.2 Discussion

We irst evaluate the sound enhancement performance of the time-

frequency spatial ilter assuming that the DOA of the speaker is

known. Fig. 5 depicts the sound enhancement results, in terms of

SNR and PESQ, for a single speaker with a varying distance (2 m,

4 m and 6 m) from the MAV, which operates at three diferent power

levels. The locations of the speaker are 8 , 5 and 1 . For each

evaluation case, we choose 5 segments of noisy data (each lasting

6 s) and calculate the average performance measure. The input SNR

varies depending on the distance between the speaker and the MAV

and also on the operation power of the MAV. In all evaluation cases,

the input SNR varies between −20 dB and −30 dB, which indicates

an extremely challenging scenario for sound enhancement. The

PESQ values of the input microphone signals are all below 1.5.

The time-frequency spatial ilter tends to perform better for higher

input SNRs. In all evaluation cases, the spatial ilter can improve the

SNR remarkably by up to 20 dB, and improve the PESQ by up to 1.

In comparison to time-frequency iltering, the ixed beamforming

performs much worse in all evaluation scenarios, even if the DOA

is given.

Fig. 6 depicts the sound enhancement results, in terms of SIR,

SNR and PESQ, for two speakers talking concurrently at a varying

distance (2 m, 4 m and 6 m) from the MAV, which operates at

hovering power level. The locations of the two speakers are ( 7 ,

9 ), ( 4 , 6 ) and ( 1 , 3 ). For each evaluation case, we choose 5

segments of noisy data (each lasting 6 s) and calculate the averaged

performance measure. For each speaker, the input SIR is around

0 dB while the input SNR is below -20 dB, and the PESQ is below 1.

The spatial ilter can extract a target speaker by suppressing the
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Figure 5: Sound enhancement by time frequency iltering

(TF) and ixed beamforming (BF) for a single speaker with a

varying distance from theMAV, which operates at 50%, 100%,

and 150% of the hovering power level. Note that the DOA of

the speaker is assumed to be known.
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Figure 6: Sound enhancement by time frequency iltering

(TF) and ixed beamforming (BF) for two speakers talking

concurrently at varying distances from the MAV, which op-

erates at the hovering power level. Note that the DOAs of the

two speakers are assumed to be known.

interfering speaker and the ego-noise simultaneously. The spatial

ilter can isolate the two speakers well by improving their input

SIR by up to 10 dB. The spatial ilter can improve the input SNR

by up to 20 dB and improve the PESQ value by up to 1.5. The ixed

beamforming performs much worse than time-frequency iltering

in all evaluation scenarios.

We then evaluate the sound enhancement performance of the

two types of spatial ilters (audio-only and audio-visual) when

processing the evaluation sequence continuously in a segment-by-

segment style. Fig. 7 presents the processing results for a single

speaker whose location varies with time and the MAV is operat-

ing at the hovering power level. Fig. 7(a) depicts the trajectory

( 7 → 4 → 1 → 3 ) of the speaker as well as their voice activity
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Figure 7: Results for a single speaker. (a) Trajectory and

voice activity of the speaker. (b) Estimated DOAs from audio

and video. (c) SNR of the enhanced sound by two spatial il-

ters (audio-only and audio-visual). (d) PESQ of the enhanced

sound by two spatial ilters.

(manually labeled). The video tracker can capture the location of

the speaker accurately. Fig. 7(b) compares the DOA estimation re-

sults between the video tracker and the audio-only localizer. The

audio localization results are consistent with the video tracking

results when the speaker is close to the MAV and the input SNR is

relatively high (i.e. in the irst two positions). The audio localization

results deviate from the video tracking results signiicantly when

the speaker is farther from the MAV and the input SNR becomes

lower (i.e. in the last two positions). Fig. 7(c) presents the SNR,

which is calculated in speech-active periods only, obtained by the

two spatial ilters. For all four positions, the input SNR is below

-20 dB and decreases as the distance increases. For the irst two po-

sitions, audio-only and audio-visual spatial ilters perform similarly

and improve the SNR by up to 20 dB. For the last two positions,

the audio-visual spatial ilter can still improve the SNR up to 20 dB,

while the audio-only spatial ilter fails. This behavior is expected

since the results are consistent with the DOA estimation shown

in Fig. 7(b). Consequently, as shown in Fig. 7(d), the audio-visual

spatial ilter can improve the PESQ value of the input signal by up

to 1 for all four positions, while the audio-only spatial ilter works

only for the irst two positions.

Fig. 8 and Fig. 9 present the processing results when two speakers

are in the scene. The trajectory of the two speakers are speaker

A: 7 → 4 → 1 → 3 and speaker B: 9 → 8 → 5 → 1 .

Fig. 8(a) depicts the trajectories of the video tracking results for the
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Figure 8: Results when two speakers are talking concur-

rently. (a) Trajectory and voice activity of the speakers. (b)

Estimated DOAs from audio and video.
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Figure 9: Results for speaker A when two speakers are talk-

ing concurrently. (a) SIR of the enhanced sound by two spa-

tial ilters (audio-only and audio-visual). (b) SNR of the en-

hanced sound by two spatial ilters. (c) PESQ of the enhanced

sound by two spatial ilters.

two speakers. It can be clearly observed that the video tracker can

capture the location of both speakers accurately. Fig. 8(b) compares

the DOA estimation results of the video tracker and the audio-

only localizer. The audio localizer has only one output and cannot

handle the ambiguities in the multi-speaker scenario. The audio
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Figure 10: Sample results on the demonstration dataset. The

proposed method tracks the DOAs of three people and ex-

tracts the sound of each speaker from the noisymicrophone

signal. (a) Recording setup. (b) Undistorted video frame. (c)

Video tracking results. (d) Crops of the upper-body of the

speakers. (e) Waveforms of the original microphone signal.

(f) Enhanced audio stream for each speaker. The voice activ-

ity of each speaker is manually labeled.

localization result either detects only one speaker (i.e. in the irst

three positions) or deviates from both speakers (i.e. in the fourth

position). We obtain similar sound enhancement results for the two

speakers and thus only show the results for speaker A achieved

by two spatial ilters (audio-visual and audio-only) in Fig. 9. The

audio-visual spatial ilter clearly outperforms the audio-only one

in terms of SIR, SNR and PESQ.

Finally, Fig. 10 shows the results for the demonstration dataset

where the trajectories of the three speakers are A: 4 → 4 →

4 → 4 → 6 → 6 , B: 5 → 5 → 5 → 5 → 5 → 5

and C: 6 → 6 → 6 → 6 → 4 → 4 . The voice activity of

each speaker during the recording is manually labeled. Based on

the DOA informed by the tracker, the time-frequency spatial ilter

can extract the sound of each speaker from the noisy microphone

signals. The visual tracker can robustly track each speaker even

under the severe visual occlusions that happen at around 100 s (see

Fig. 10(c)).

7 CONCLUSIONS

We explored the combination of audio and visual modalities to en-

hance sounds captured from an MAV. The visual module employs

a multi-object tracker that locates potential sound emitting objects,

whereas the audio module employs a time-frequency spatial ilter-

ing technique to enhance the sound from the directions provided

by the video module. We have shown that by exploiting the two

modalities the proposed method can isolate the sound of individual

speakers in extremely low-SNR scenarios.

In future work, we will extend the proposed method to cope

with lying MAVs with the additional challenge introduced by the

movement of the camera and the microphones.
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