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1. Introduction

3The Alan Turing Institute, UK

3. Proposed Architecture

» Acoustic Scene Classification (ASC) — problem of classifying a recording
into a scene label in which it is recorded, is one of the core research
problems in the field of Computational Sound Scene Analysis.

» We propose SubSpectralNets, a novel deep learning model which
captures intricate features by incorporating frequency band-level
differences to model soundscapes.

» Evaluated on the public ASC development dataset provided for the
“Detection and Classification of Acoustic Scenes and Events” (DCASE)
2018 Challenge.
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» Code: https://github.com/ssrp/SubSpectralNet
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Figure 1. A spectrogram of an audio sample
belonging to shopping mall class.

» Paper: https://arxiv.org/abs/1810.12642
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Figure 2. Distribution of average mel-bins for each class in the dataset

» Magnitude spectrograms are two-dimensional representations
over time and frequency — very different from real life images.

» Definitive local relationships in the time dimension, but not in the
frequency dimension. Clear variation in the frequency axis (example
shown in Figure 1).

» Frequency dimension for different sounds might have either:

» local relationships (e.g. noise-like sounds),
» non-local relationships (e.g. harmonic sounds),
» no local relationships at all.
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Figure 3. Distribution of average mel-bins for each class in the dataset

» We observe a definite variation of activation of mel-bins and sub-
bands, which is specific to every scene.
» For example, the “metro” class has more activation in lower
frequency bins; the “bus” has less activation in mid frequency
bins (shown in Figure 2 and 3).
» In SubSpectralNets, we exploit this property of spectrograms to
leverage the performance of a CNN architecture. This has never
been done in the literature before.
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BN: BatchNorm

MP: MaxPool

FC: Fully Connected Layer
Conv Kernels: (7 x 7)

BN, ReLU
MP(X/10, 5), Dropout(0.3)
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Figure 4. Proposed pipeline of SubSpectralNet
Divide Spectrogram into various vertical splits (Figure 4):
v' Use appropriate sub-spectrogram size
v' Use a vertical mel-bin hop size

Separate backpropagations for every weak classifier — “sub-classifiers”.

Global Classifier to extract correlations in the sub-spectrograms.

4. Experiments and Observations

Faster convergence over the baseline (Figure 5).

74.08% best test accuracy. +14% increase over the baseline (Figure 6).
Statistical Analysis is robust. For example, for the “airport” class: statistical
distribution says that lower frequencies are more effective in classification.
Same trend is shown in SubSpectralNet where the low-band sub-classifier
shows better results (Figure 7).
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Figure 5. Comparison of performance between the DCASE 2018 baseline model

and SubSpectralNet
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Figure 6. Results obtained by SubSpectralNet on — (a) 40 mel-bin spectrogram and 10
mel-bin hop-size; (b) 200 mel-bin spectrogram with 10 mel-bin hop-size; (c) 200 mel-
bin spectrogram, varying subspectrogram and mel-bin hop-size
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Figure 7. Confusion Matrices for specific sub-classifiers of different bands

5. Conclusion

» Specific bands of mel-spectrograms carry discriminative information than
other bands, which is specific to every soundscape.

» SubSpectralNets split the time-frequency features into sub-spectrograms,
then merges the band-level features on a later stage for the global
classification.



