
Figure 5. Comparison of performance between the DCASE 2018 baseline model 
and SubSpectralNet
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1. Introduction
 Acoustic Scene Classification (ASC) – problem of classifying a recording

into a scene label in which it is recorded, is one of the core research
problems in the field of Computational Sound Scene Analysis.

 We propose SubSpectralNets, a novel deep learning model which
captures intricate features by incorporating frequency band-level
differences to model soundscapes.

 Evaluated on the public ASC development dataset provided for the
“Detection and Classification of Acoustic Scenes and Events” (DCASE)
2018 Challenge.

 Code: https://github.com/ssrp/SubSpectralNet

 Paper: https://arxiv.org/abs/1810.12642
Figure 1. A spectrogram of an audio sample 

belonging to shopping mall class.

2. Motivation

 Magnitude spectrograms are two-dimensional representations
over time and frequency – very different from real life images.

 Definitive local relationships in the time dimension, but not in the
frequency dimension. Clear variation in the frequency axis (example
shown in Figure 1).

 Frequency dimension for different sounds might have either:
 local relationships (e.g. noise-like sounds),
 non-local relationships (e.g. harmonic sounds),
 no local relationships at all.

 We observe a definite variation of activation of mel-bins and sub-
bands, which is specific to every scene.
 For example, the “metro” class has more activation in lower

frequency bins; the “bus” has less activation in mid frequency
bins (shown in Figure 2 and 3).

 In SubSpectralNets, we exploit this property of spectrograms to
leverage the performance of a CNN architecture. This has never
been done in the literature before.

3. Proposed Architecture

4. Experiments and Observations

5. Conclusion

 Divide Spectrogram into various vertical splits (Figure 4):

 Use appropriate sub-spectrogram size

 Use a vertical mel-bin hop size

 Separate backpropagations for every weak classifier – “sub-classifiers”.

 Global Classifier to extract correlations in the sub-spectrograms.

 Faster convergence over the baseline (Figure 5).
 74.08% best test accuracy. +14% increase over the baseline (Figure 6).
 Statistical Analysis is robust. For example, for the “airport” class: statistical

distribution says that lower frequencies are more effective in classification.
Same trend is shown in SubSpectralNet where the low-band sub-classifier
shows better results (Figure 7).

 Specific bands of mel-spectrograms carry discriminative information than
other bands, which is specific to every soundscape.

 SubSpectralNets split the time-frequency features into sub-spectrograms,
then merges the band-level features on a later stage for the global
classification.

Figure 6. Results obtained by SubSpectralNet on – (a) 40 mel-bin spectrogram and 10 
mel-bin hop-size; (b) 200 mel-bin spectrogram with 10 mel-bin hop-size; (c) 200 mel-

bin spectrogram, varying subspectrogram and mel-bin hop-size
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Figure 4. Proposed pipeline of SubSpectralNet

Figure 2. Distribution of average mel-bins for each class in the dataset

Figure 7. Confusion Matrices for specific sub-classifiers of different bands

Figure 3. Distribution of average mel-bins for each class in the dataset


