
Figure 5. Comparison of performance between the DCASE 2018 baseline model 
and SubSpectralNet
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1. Introduction
 Acoustic Scene Classification (ASC) – problem of classifying a recording

into a scene label in which it is recorded, is one of the core research
problems in the field of Computational Sound Scene Analysis.

 We propose SubSpectralNets, a novel deep learning model which
captures intricate features by incorporating frequency band-level
differences to model soundscapes.

 Evaluated on the public ASC development dataset provided for the
“Detection and Classification of Acoustic Scenes and Events” (DCASE)
2018 Challenge.

 Code: https://github.com/ssrp/SubSpectralNet

 Paper: https://arxiv.org/abs/1810.12642
Figure 1. A spectrogram of an audio sample 

belonging to shopping mall class.

2. Motivation

 Magnitude spectrograms are two-dimensional representations
over time and frequency – very different from real life images.

 Definitive local relationships in the time dimension, but not in the
frequency dimension. Clear variation in the frequency axis (example
shown in Figure 1).

 Frequency dimension for different sounds might have either:
 local relationships (e.g. noise-like sounds),
 non-local relationships (e.g. harmonic sounds),
 no local relationships at all.

 We observe a definite variation of activation of mel-bins and sub-
bands, which is specific to every scene.
 For example, the “metro” class has more activation in lower

frequency bins; the “bus” has less activation in mid frequency
bins (shown in Figure 2 and 3).

 In SubSpectralNets, we exploit this property of spectrograms to
leverage the performance of a CNN architecture. This has never
been done in the literature before.

3. Proposed Architecture

4. Experiments and Observations

5. Conclusion

 Divide Spectrogram into various vertical splits (Figure 4):

 Use appropriate sub-spectrogram size

 Use a vertical mel-bin hop size

 Separate backpropagations for every weak classifier – “sub-classifiers”.

 Global Classifier to extract correlations in the sub-spectrograms.

 Faster convergence over the baseline (Figure 5).
 74.08% best test accuracy. +14% increase over the baseline (Figure 6).
 Statistical Analysis is robust. For example, for the “airport” class: statistical

distribution says that lower frequencies are more effective in classification.
Same trend is shown in SubSpectralNet where the low-band sub-classifier
shows better results (Figure 7).

 Specific bands of mel-spectrograms carry discriminative information than
other bands, which is specific to every soundscape.

 SubSpectralNets split the time-frequency features into sub-spectrograms,
then merges the band-level features on a later stage for the global
classification.

Figure 6. Results obtained by SubSpectralNet on – (a) 40 mel-bin spectrogram and 10 
mel-bin hop-size; (b) 200 mel-bin spectrogram with 10 mel-bin hop-size; (c) 200 mel-

bin spectrogram, varying subspectrogram and mel-bin hop-size
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Figure 4. Proposed pipeline of SubSpectralNet

Figure 2. Distribution of average mel-bins for each class in the dataset

Figure 7. Confusion Matrices for specific sub-classifiers of different bands

Figure 3. Distribution of average mel-bins for each class in the dataset


