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Motivation
• Source separation (SS) aims to infer latent signals from a mixture [1].
•Time-frequency SS methods often discard phase. Thus, approximations
are required, corrupting the reconstruction [4].
•Time-domain SS approaches based on Gaussian processes (GP) circum-
vent phase approximation [4]. GPs are distributions over functions.
•GPs are intractable for large audio signals, as the computational complex-
ity of inference scales cubically with the data size. Also, GP predictions
depend deeply on the kernel/prior.
•We analysed whether combining spectrum-inspired kernels and varia-
tional sparse GPs inference leads to more efficient and accurate SS models.

Source separation example using the proposed method:

Fig. 1: Mixture signal. Fig. 2: Reconstructed source C4.

Fig. 3: Reconstructed source E4. Fig. 4: Reconstructed source G4.

Method
•Test data: {yi, ti}ni=1, where yi ∈ R is the i-th audio
waveform sample of the mixture, at time ti ∈ R.
•Train data: isolated (single pitch) music notes, {g(j)}Jj=1,
where g(j) ∈ Rñ.
•Regression model: The mixture is modelled as a sum of
GP sources, i.e. yi = f (ti) + εi, where f (ti) =

∑J
j=1 sj(ti),

and εi ∼ N (0, ν2).
•Prior: sources are GPs, sj(t) ∼ GP (0, kj(t, t′)). Thus,
f (t) ∼ GP(0,

∑J
j=1 kj(t, t′)), sj ∼ N (0, Ksj), and

f ∼ N (0, Kf), where sj = [sj(ti)]ni=1, f = [f (ti)]ni=1,
Ksj[i, j] = kj(ti, yj), and Kf =

∑J
j=1 Ksj.

•Covariance: we used spectral mixture (SM) kernels

kj(τ ) = σ2
j exp

(
− τ
`j

)
×

D∑
d=1

α2
jd cos(ωjd τ ), (1)

with θj = {σ2
j , `j, [α2

jd, ωjd]Dd=1}, and τ = |t− t′| [3].
Likelihood: y | f ∼ N (y | f , ν2I), where y = [yi]ni=1.
Posterior:

sj | y ∼ N
(

si | K>sjH
−1y, K̂sj

)
, (2)

where H = Kf + ν2I, and K̂sj = Ksj −K>sjH
−1Ksj.
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Inference:
The kernels were initialized by minimizing

L(θj) = 1
Nc

Nc∑
i=1

[kj(τ̂i)− Cj(τ̂i)]2 , (3)

Cj(τ̂ ) = 1
T

∫ T

0
g(j)(x + τ̂ ) g(j)(x) dx, (4)

where Cj(·) is the autocorrelation of the j-th training sig-
nal. To handle long signals, we windowed y into frames
{t̂(w), ŷ(w)}Ww=1, and optimized (5) with respect to {σ2

j}Jj=1,
using inducing variables u = [f (zi)]mi=1, at points z = [zi]mi=1.

L ∆= logN
(

ŷ(w)|0,Qn̂n̂ + ν2I
)
− 1

2ν2tr (Kn̂n̂ −Qn̂n̂) , (5)

where Qn̂n̂ = Kn̂mK−1
mmKmn̂, Kn̂m[i, j] = kf(t(w)

i , zj),
Kmm[i, j] = kf(zi, zj), and t(w)

i = t(w)[i] ([2]). We computed
(2) for each window, and merged the reconstructed sources.
Experiments:
•We used the dataset analysed in [4]: three mixture signals
(piano, electric guitar, clarinet) sampled at 16kHz.
•Each mixture last 14 seconds, and has the sequence of
events C4, E4, G4, C4+E4, C4+G4, E4+G4, C4+E4+G4.
•Compared methods: LD-PSDTF (positive semi-definite
tensor factorization), KL-NMF (Kullback-Leibler NMF),
and IS-NMF (Itakura-Saito NMF).
•The first three isolated events were used for training.

Results
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Fig. 6: Evaluation metrics versus kernel complexity. SDR (a), SIR (b), SAR (c), RMSE (d).
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Fig. 7: Learned kernels for piano notes (left column). Corresponding log-spectral density (right column).
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Fig. 8: Source separation metrics. Proposed method: SSGP.

• SSGP presented the highest SDR and SIR metrics (Fig. 8).
• SSGP reduced the optimization time by 98.12% compared
to the full GP model (Fig. 9).
•The learned kernels showed distinctive spectral patterns for
each source (Fig. 7), suggesting SM kernels are suitable for
learning intricate frequency content.
• SSGP is robust to kernel selection when the number of com-
ponents in the source kernels is greater than three (Fig. 6).
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Fig. 9: Optimisation time.

•RMSE decreased exponentially with D, suggesting that increasing the number of com-
ponents in the kernel leads to more accurate waveform reconstructions (Fig. 6(d)).

Conclusions
•Combining variational sparse GPs and SM kernels enables time-domain source separation
GP models to reconstruct audio sources in an efficient and informed manner, without
compromising performance.
• Suitable spectrum priors over the sources are essential to improve source reconstruction.
• SSGP can be used for other applications such as multipitch-detection, where low inter-
ference between sources (SIR) is more relevant than reconstruction artifacts (SAR).
•Code available at https://github.com/PabloAlvarado/ssgp.
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