

Self-Referenced Deep Learning

Xiatian Zhu² Shaogang Gong¹ Xu Lan¹

eddy@visionsemantics.com x.lan@qmul.ac.uk

s.gong@qmul.ac.uk

²Vision Semantics Ltd ¹Queen Mary University of London, London, UK

1. Introduction

Table 1: The label information and the model predictions

С	ategory	Audi	BMW	Carrot					Carrot
Label	Hard Label	1	0	0	Model	Model-A Model P	0.6	0.39	0.01
Label	Soft Label	0.95	0.049	0.001		Model-B	0.6	0.01	0.39


CE+Hard: $Loss_A = Loss_B$ CE+Soft: $Loss_A < Loss_B$

Drawbacks of Hard Label based Cross Entropy:

> Considering no correlation between classes.

 \geq Prone to model overfitting.

Solution: Knowledge Distillation

Figure1: Illustration of different deep network learning methods. (a) The vanilla training ; (b) Knowledge Distillation training ; (c) The proposed Self Reference Deep learning (SRDL).

Contributions:

2. Methodology

> Investigate for the first time knowledge distillation and fast optimisation in the model training using a unified deep learning approach

> Present a stage-complete learning rate decay schedule for SRDL.

 \geq introduce a random model restart scheme for SRDL.

3. Experiments

Target	Class Probability Prediction	(b) Self-Discovered Knowledge	(a) Ground Truth
Model -	(f) Random Model Restart	1 O Cat Dog Car Othe (e)	Labels
	Class Probability Prediction	y _	
		Class Probabilit	(e) Class Probability

Figure 2: Overview of our proposed Self-Referenced Deep Learning (SRDL)

> Comparison with the Vanilla Learning Strategy

Dataset	# Param	CIFA	AR10	CIFA	R100	Tiny ImageNet		
Metrics		Acc	TrCost	Acc	TrCost	Acc	TrCost	
ResNet-32+vanilla		92.53	0.08	69.02	0.08	53.33	0.32	
ResNet- $32+SRDL$	0.5M	93.12	0.08	71.63	0.08	55.53	0.32	
Gain (SRDL-vanilla)		+0.59	0	+2.61	0	+2.20	0	
WRN-28-10+vanilla		94.98	12.62	78.32	12.62	58.38	50.48	
WRN-28-10+ \mathbf{SRDL}	$36.5 \mathrm{M}$	95.41	12.62	79.38	12.62	60.80	50.48	
Gain (SRDL-vanilla)		+0.43	0	+1.06	0	+2.42	0	
DenseNet-BC+vanilla		96.68	10.24	82.83	10.24	62.88	40.96	
$\mathrm{DenseNet}\text{-}\mathrm{BC}\text{+}\mathbf{SRDL}$	$25.6 \mathrm{M}$	96.87	10.24	83.59	10.24	64.19	40.96	
Gain (SRDL-vanilla)		+0.19	0	+0.76	0	+1.31	0	

Table 2: Comparison between SRDL and vanilla learning on image classification

First Stage Learning:

- \geq In first stage of SRDL, we train the deep model θ by cross-entropy loss.
- > To maximise the quality of self-discovered knowledge, we introduce Figure 2 (c) a pass-complete learning rate decay schedule.

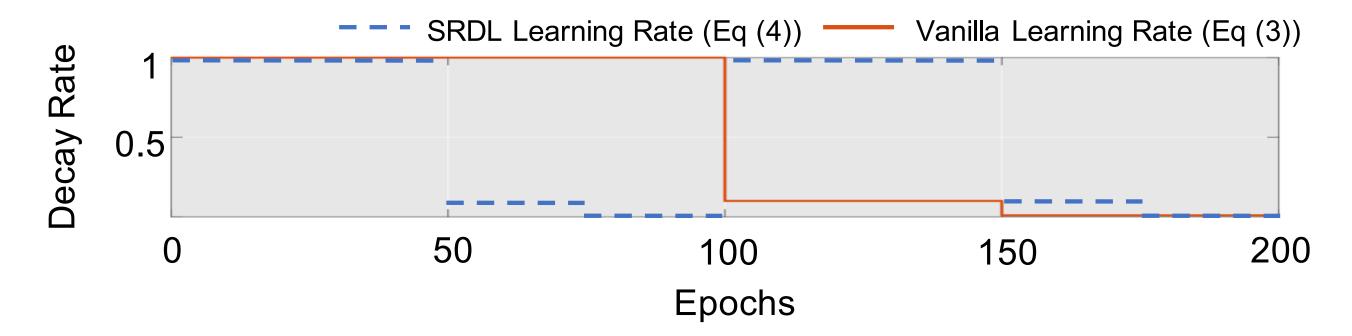


Figure 3: Illustration of a vanilla learning rate step-decay function and the proposed stage-complete learning rate step-decay schedule.

Second Stage Learning:

- \geq We start second stage training with randomly initialised model parameters.
- \succ Continuously optimize the target model for the other half epochs by the joint supervision of both Figure2 (d) the label data and Figure2 (e) selfdiscovered intermediate knowledge in an end-to-end manner.

$$R_{\rm kl} = \sum_{i=1}^{C} \tilde{p}(j|\boldsymbol{x}, \boldsymbol{\theta}^*) \log \frac{\tilde{p}(j|\boldsymbol{x}, \boldsymbol{\theta}^*)}{\tilde{p}(j|\boldsymbol{x}, \boldsymbol{\theta})}. \qquad \qquad \mathcal{L} = \mathcal{L}_{\rm ce} + T^2 * R_{\rm kl}$$

> Comparison with Knowledge Distillation

Target Net	Method	Teacher Net	CIFA	AR10	CIFA	AR100	Tiny ImageNet	
Target Net	Method	Teacher Net	Acc	TrCost	Acc	TrCost	Acc	TrCost
	Vanilla	N/A	92.53	0.08	69.02	0.08	53.33	0.32
ResNet-32	KD	WRN-28-10 (36.5M)	92.83	12.70	72.58	12.70	56.80	50.80
11051101-52		ResNet-110 (1.7M)	92.75	0.30	71.17	0.30	55.06	1.20
(0.5M)	SRDL	N/A	93.12	0.08	71.63	0.08	55.53	0.32

Table 3: Comparison between SRDL and Knowledge Distillation (KD)

Evaluation on Person Instance Recognition

Query Type	Single-0	Query	Multi-Q	Multi-Query		
Metrics $(\%)$	Rank-1	mAP	Rank-1	mAP		
ResNet-50+vanilla	87.5	69.9	91.4	78.5		
ResNet-50+ \mathbf{SRDL}	89.3	73.5	93.1	81.5		
Gain (SRDL-vanilla)	+1.8	+3.6	+1.7	+3.0		
DenseNet-121+vanilla	90.1	74.0	93.6	81.7		
DenseNet-121+ \mathbf{SRDL}	91.7	76.8	94.2	83.5		
Gain (SRDL-vanilla)	+1.6	+2.8	+0.6	+1.8		

Table 4: Evaluation of person re-id (instance recognition) on Market-1501.

Component Analysis and Discussion

		11	1.1	1.1	17.		/		
	1	\mathbf{r}	Ĵ	19	\sim ,	•	-)		
i=	- 1	•	10						
1 -	- 1								

Algorithm 1. Self-Referenced Deep Learning

- 1: Input: Labelled training data \mathcal{D} ; Training epochs M;
- 2: **Output**: Trained CNN model $\boldsymbol{\theta}$;
- 3: (I) First stage learning
- 4: Initialisation: t=1; Random model θ initialisation;
- 5: while $t \le 0.5 * M$ do
- (i) Update the learning rate ϵ_t (Eq (4)); 6:
- (ii) Update $\boldsymbol{\theta}$ by cross-entropy loss (Eq (2)); 7:

8: **end**

15: end

- 9: Knowledge Extraction Induce per-sample class probability predictions (Eq (5));
- 10: (II) Second stage learning
- 11: Initialisation: t=1; Random model θ restart;
- 12: while $t \le 0.5 * M$ do
- (i) Update the learning rate ϵ_t (Eq (4)); 13:
- (ii) Update $\boldsymbol{\theta}$ by soft-feedback referenced loss (Eq (7)); 14:

Decay Strategy	Accuracy (%)
Stage-Incomplete	58.11
Stage-Complete	71.63

Random Restart	Accuracy (%)
×	69.73
\checkmark	71.63

Table 5: Stage-complete schedule

Table 6: Random model restart.

4. Conclusion

- SRDL train more discriminative small and large networks with little extra computational cost.
- The results validate the performance superiority of SRDL training.

5. Reference

[1] Hinton et al. : Distilling the knowledge in a neural network.