

Real-time quality assessment of videos from body-worn cameras

Yuan-Yi Chang, Riccardo Mazzon, Andrea Cavallaro

{y.chang}@sel6.qmul.ac.uk, {r.mazzon,a.cavallaro}@qmul.ac.uk

Introduction

- Body-worn camera videos \bullet
- Aim: to provide a frame-by-frame quality score of a video \rightarrow Video quality assessment (VQA) \bullet
- Challenges lacksquare
 - scene conditions change abruptly
 - continuous changing of quality
 - score to be calculated quickly
 - uncontrolled scenarios with multiple simultaneous distortions
- Related work \bullet
 - full [1], reduced [2] and mutual [3] reference
 - no reference: distortion (e.g. blur) specific [4] and non-distortion specific [5]

Proposed approach: M-BRISQUE

- No-reference and non-distortion specific VQA method with a real-time implementation
- Michelson Contrast (MC) to account for distortions of the whole frame global cue

image max intensity value
$$\overleftarrow{C_m} = \underbrace{I_{max} - I_{min}}_{I_{max}} + \underbrace{I_{min}}_{I_{max}} \rightarrow \text{ image min intensity value}$$

Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE [5]) to account for patch-based distortions - local cues

pixel location

- Mean Subtracted Contrast Normalised (MSCN) coefficients $\hat{I}(i,j) = \frac{I(i,j) \mu(i,j)}{(i,j)}$ mean of local patch weighted by a Gaussian $(\sigma(i,j)+1)$
 - descriptors of luminance for image patches
 - vary coherently in the presence of a distortion
- distortion estimation [6] by fitting the histogram of $\hat{I}(i, j)$ with \bullet
 - Generalised Gaussian Distribution (GGD) defined by mean (α) and variance (σ_q^2)
 - Asymmetric Generalised Gaussian Distribution (AGGD) defined by mean (η), shape (v) and variances (σ_l^2, σ_r^2)
- Feature vector to describe the frames

 $\begin{pmatrix} C_{m}, (\alpha, \sigma_{g}^{2}), (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{H}, (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{V}, (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{D_{1}}, (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{D_{2}}, (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{V}, (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{V}, (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{D_{1}}^{*}, (\eta, \nu, \sigma_{l}^{2}, \sigma_{r}^{2})_{D_{2}} \end{pmatrix}$ → image at half resolution

Operates in the spatial domain (no Gabor filters, Wavelets or DCT) \rightarrow computationally efficient

Experimental results

Spearman's Rank Ordered Correlation Coefficient (**SROCC**) to correlate human judgement \leftrightarrow image score

Training

- M-BRISQUE score
 - Support Vector Regression (SVR)
 - Radial Basis Function (RBF) kernel
- **Computational and Subjective Image** Quality (CSIQ) database [7]
 - 30 original images
 - distortions for each image:
 - JPEG and JPEG2000 compressions \bullet
 - global contrast decrements \bullet
 - additive pink Gaussian noise lacksquare
 - additive white Gaussian noise
 - Gaussian blurring

Testing

• LIVE Mobile In-Capture Video Quality Database [8]

standard deviation of local patch

weighted by a Gaussian

• 208 videos captured with 8 hand-held devices

1 st best 2 nd best	<image/>					
Distortion Method	Artifacts	Colour	Exposure	Focus	Sharpness	Stabilisation
RMS	.007	.171	.026	.147	.007	.134
MC	.400	.130	.473	.080	.580	.280
BRISQUE	.601	.328	.492	.301	.451	.513

Project webpage: http://cis.eecs.qmul.ac.uk/projects/MBRISQUE

Additional info: http://www.eecs.qmul.ac.uk/~andrea