Real-time quality assessment of videos from body-worn cameras
Yuan-Yi Chang, Riccardo Mazzon, Andrea Cavallaro
{y.chang}@se16.qmul.ac.uk, {r.mazzon,a.cavallaro}@qmul.ac.uk

Project webpage: http://cis.eecs.qmul.ac.uk/projects/MBRISQUE

Introduction
• Body-worn camera videos
• Aim: to provide a frame-by-frame quality score of a video → Video quality assessment (VQA)

• Challenges
 • scene conditions change abruptly
 • continuous changing of quality
 • score to be calculated quickly
 • uncontrolled scenarios with multiple simultaneous distortions

• Related work
 • full [1], reduced [2] and mutual [3] reference
 • no reference: distortion (e.g. blur) specific [4] and non-distortion specific [5]

Proposed approach: M-BRISQUE
• No-reference and non-distortion specific VQA method with a real-time implementation
 • Michelson Contrast (MC) to account for distortions of the whole frame - global cue
 \[
 C_m = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
 \]
 • Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE [5]) to account for patch-based distortions - local cues
 \[
 f(i,j) = \frac{\sum_{(i,j)} |\hat{I}(i,j) - \hat{I}(i,j)|}{\sigma(I) + 1}
 \]
 • descriptors of luminance for image patches
 • vary coherently in the presence of a distortion
 • distortion estimation [9] by fitting the histogram of \(f(i,j) \) with
 • Generalised Gaussian Distribution (GGD) defined by mean (\(\mu \)) and variance (\(\sigma^2 \))
 • Asymmetric Generalised Gaussian Distribution (AGGD) defined by mean (\(\mu \)), shape (\(\nu \)) and variances (\(\sigma_1^2, \sigma_2^2 \))

• Feature vector to describe the frames:
 \[
 \{C_m, (\alpha, \sigma_0^2), (\eta, v, \sigma_1^2, \sigma_2^2)\}_H, (\eta, v, \sigma_1^2, \sigma_2^2)\}_V, (\eta, v, \sigma_1^2, \sigma_2^2)\}_D
 \]
 • Operates in the spatial domain (no Gabor filters, Wavelets or DCT) → computationally efficient

Experimental results
• Spearman’s Rank Ordered Correlation Coefficient (SROCC) to correlate human judgement ↔ image score

Training
• M-BRISQUE score
 • Support Vector Regression (SVR)
 • Radial Basis Function (RBF) kernel
 • Computational and Subjective Image Quality (CSIQ) database [7]
 • 30 original images
 • distortions for each image:
 • JPEG and JPEG2000 compressions
 • global contrast decrements
 • additive pink Gaussian noise
 • additive white Gaussian noise
 • Gaussian blurring

 • Mean Subtracted Contrast Normalised (MSCN) coefficients \(\hat{I}(i,j) \)

 • Location
 • Standard deviation
 • Mean
 • RMS noise: \(\frac{\sum_{(i,j)} (I(i,j) - \mu)^2}{\sigma(I) + 1} \)
 • MC noise: \(\frac{\sum_{(i,j)} |I(i,j) - \mu|}{\sigma(I) + 1} \)
 • BRISQUE noise: \(\frac{\sum_{(i,j)} (I(i,j) - \mu)^2}{\sigma(I) + 1} \)

 • Features
 • Mean subtracted contrast normalized for image patches
 • luminance for image patches
 • vary coherently in the presence of a distortion

Testing
• LIVE Mobile In-Capture Video Quality Database [8]
 • 208 videos captured with 8 hand-held devices

M-BRISQUE scores w.r.t. BRISQUE

References

Watch the live demo