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Introduction
• Body-worn camera videos
• Aim: to provide a frame-by-frame quality score of a video → Video quality assessment (VQA)
• Challenges

• scene conditions change abruptly
• continuous changing of quality
• score to be calculated quickly

• uncontrolled scenarios with multiple simultaneous distortions
• Related work

• full [1], reduced [2] and mutual [3] reference
• no reference: distortion (e.g. blur) specific [4] and non-distortion specific [5]
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Experimental results
• Spearman’s Rank Ordered Correlation Coefficient (SROCC) to correlate human judgement ↔ image score
Training
• M-BRISQUE score 

• Support Vector Regression (SVR) 
• Radial Basis Function (RBF) kernel

• Computational and Subjective Image 
Quality (CSIQ) database [7]
• 30 original images
• distortions for each image: 

• JPEG and JPEG2000 compressions
• global contrast decrements 
• additive pink Gaussian noise
• additive white Gaussian noise
• Gaussian blurring

Artifacts Colour Exposure Focus Sharpness Stabilisation

RMS .007 .171 .026 .147 .007 .134

MC .400 .130 .473 .080 .580 .280

BRISQUE .601 .328 .492 .301 .451 .513

M-BRISQUE .558 .516 .601 .358 .544 .508

Proposed approach: M-BRISQUE
• No-reference and non-distortion specific VQA method with a real-time implementation
• Michelson Contrast (MC) to account for distortions of the whole frame - global cue 

• Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE [5]) to account for patch-based distortions - local cues 

• Mean Subtracted Contrast Normalised (MSCN) coefficients 

• descriptors of luminance for image patches 
• vary coherently in the presence of a distortion

• distortion estimation [6] by fitting the histogram of with
• Generalised Gaussian Distribution (GGD) defined by mean ( ) and variance ( )
• Asymmetric Generalised Gaussian Distribution (AGGD) defined by mean ( ), shape ( ) and variances ( )

• Feature vector to describe the frames

• Operates in the spatial domain (no Gabor filters, Wavelets or DCT) → computationally efficient
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Superior performance w.r.t. BRISQUE

M-BRISQUE scores
(dataset [9]) .205 .279 .419 .434 .601 .689
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Testing
• LIVE Mobile In-Capture Video Quality Database [8]
• 208 videos captured with 8 hand-held devices


