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1. Introduction

Objective: To exploit deep reinforcement learning (RL) for navigation

- To maximise the expected sum of rewards r; during T

T steps by optimi§ing Op IN a parameterised policy, max Er(sp0p) [2 ) Tt]
ni(s; 0p), generating the action a, from the state s;: i t=0

Challenge
- The goal is far from the initial state: sparse extrinsic rewards
- Hard to train the policy n(s;; 8p) which determines action a;

2. Related Work

Asynchronous Actor-Critic Agents (A3C) [1]
- RL approach handling multiple agents In training
- Hard to train the model with sparse extrinsic rewards

Curiosity-driven Exploration (ICM) [2,3]
- Intrinsic rewards to encourage an agent to explore unseen regions
- Using the prediction error-based loss function as intrinsic reward
- Handling various actions by one-hot encoding scheme
- Less capability to discriminate the predictions from different input actions

3. Proposed Approach: Action Representation for Exploration (AR4E)

Overview
- A self-supervised prediction network that predicts the (future) state from
a state-action pair
- An action representation module that boosts the representation power
- Ajoint regression and triplet ranking loss for learning features effectively
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Explicit Modelling of the Action Representation
- Decoding one-hot codes of input actions to high-dimensional representations
- Generating more expressive features during training
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Forward Model: Learning to encode information relates to the performing task
1) Regression loss: learning to predict a future state
from the current state and action
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L;(a;, a;): Softmax classification
between a; and predicted a;

Inverse Model
Intrinsic Rewards: Prediction error-based rewards with a scaling factor n:

rti = 77‘ $(5t+1) — d(S¢41)
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Policy Network: Generating the action a; from the state s;

n(ss; 0p): LSTM network to encode temporal information

Final Loss: Learning to maximise the extrinsic and intrinsic rewards, r¢ and r¢,
and minimise the losses for the forward and inverse models:
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4. Experiments

Setup
- Approaches: A3C [1], ICM [2], and AR4E (Proposed)
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Fine-tuning pre-trained models with sparse setting
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5. Conclusion References

- Learning features by explicit modelling of action representations and with the

joint regression and triplet ranking loss functions for efficient exploration

- Faster RL training convergence than A3C [1] or ICM [2] (with +0.5% parameters)
as the sparsity of the extrinsic rewards increases

- Handling the repetitive movement during navigation as a future work
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