

Learning Action Representations for Self-supervised Visual Exploration

Changjae Oh and Andrea Cavallaro
{c.oh,a.cavallaro}@qmul.ac.uk

1. Introduction

Objective: To exploit deep reinforcement learning (RL) for navigation

- To maximise the expected sum of rewards r_t during T steps by optimising θ_P in a parameterised policy, $\pi(s_t; \theta_P)$, generating the action a_t from the state s_t :

 $\max_{\theta_P} E_{\pi(s_t;\theta_P)} \left[\sum_{t=0}^T r_t \right]$

Challenge

- The goal is far from the initial state: sparse extrinsic rewards
- Hard to train the policy $\pi(s_t; \theta_P)$ which determines action a_t

2. Related Work

- Asynchronous Actor-Critic Agents (A3C) [1]
 - RL approach handling multiple agents in training
 - Hard to train the model with sparse extrinsic rewards

Curiosity-driven Exploration (ICM) [2,3]

- Intrinsic rewards to encourage an agent to explore unseen regions
- Using the prediction error-based loss function as intrinsic reward
- Handling various actions by one-hot encoding scheme
- Less capability to discriminate the predictions from different input actions

3. Proposed Approach: Action Representation for Exploration (AR4E)

Overview

- A self-supervised prediction network that predicts the (future) state from a state-action pair
- An action representation module that boosts the representation power
- A joint regression and triplet ranking loss for learning features effectively

Explicit Modelling of the Action Representation

- Decoding one-hot codes of input actions to high-dimensional representations
- Generating more expressive features during training

Forward Model: Learning to encode information relates to the performing task 1) Regression loss: learning to predict a future state from the current state and action
♦▲: Previous Features

 $-\|\bar{\phi}(s_{t+1}) - \bar{\phi}(\tilde{s}_{t+1})\|_{2}^{2}$

 $L_{F_1} = \left\| \bar{\phi}(s_{t+1}) - \phi(s_{t+1}) \right\|_2^2$

3) Joint Regression and Triplet loss functions:

2) Triplet ranking loss [4]: discriminating $\overline{\phi}(s_{t+1})$ from

a prediction with a different action $\tilde{a}_t, \bar{\phi}(\tilde{s}_{t+1})$:

 $L_{F_2} = \max(0, m + \|\bar{\phi}(s_{t+1}) - \phi(s_{t+1})\|_2^2$

 $L_F = L_{F_1} + \gamma L_{F_2}$ Inverse Model: Learning to recognise an actual action a_t from states s_t and s_{t+1} $L_I(a_t, \bar{a}_t)$: Softmax classification

between a_t and predicted \overline{a}_t

Intrinsic Rewards: Prediction error-based rewards with a scaling factor η :

 $r_t^i = \eta \| \bar{\phi}(s_{t+1}) - \phi(s_{t+1}) \|_2^2$

4. Experiments

Setup

- Approaches: A3C [1], ICM [2], and AR4E (Proposed)
- Action space: move forward, turn left, turn right, no action
- Environment: VizDoom MyWayHome [5]
- Reward Setting: Dense (random spawning in different locations), Sparse (270 steps), Extremely Sparse (350 steps)
- Total training steps: 20M steps
- RL method: A3C [1] with 16 agents

Dense:
Content A Sparse:
Conte

Policy Network: Generating the action a_t from the state s_t

 $\pi(s_t; \theta_P)$: LSTM network to encode temporal information

Final Loss: Learning to maximise the extrinsic and intrinsic rewards, r_t^e and r_t^i , and minimise the losses for the forward and inverse models:

$$\min_{\Theta_P,\Theta_F,\Theta_I} -\lambda E_{\pi(s_t;\Theta_P)} \left[\sum_t r_t^e + r_t^i \right] + L_F + L_I$$

 $\theta_P, \theta_F, \theta_I$ Network parameters for the policy, forward, and inverse model

Results

Fine-tuning pre-trained models with sparse settingPre-training total stepsSuccess rate (%)0 (from scratch) 94.45 ± 22.87 0.5M 91.89 ± 27.28 2M 92.01 ± 26.08 10M96.32 \pm 18.89

	0000			
Model		Success rate (%)		
orward	Inverse	Dense	Sparse	Extremely Sparse
L_F	-	7.87 ± 26.93	0.01 ± 1.12	0.06 ± 2.50
-	L _I	9.12 ± 28.79	0.44 ± 6.60	0.09 ± 2.96
L_{F_1}	L_I	96.78 ± 17.63	91.33 ± 28.13	87.10 ± 33.51
L_{F_2}	L_I	8.13 ± 27.33	0.006 ± 0.00	11.25 ± 3.35
L_F	L_I	96.06 ± 19.43	94.45 ± 22.87	87.13 ± 33.48
	-			•

5. Conclusion

- Learning features by explicit modelling of action representations and with the joint regression and triplet ranking loss functions for efficient exploration
- Faster RL training convergence than A3C [1] or ICM [2] (with +0.5% parameters) as the sparsity of the extrinsic rewards increases
- Handling the repetitive movement during navigation as a future work

Acknowledgment

This work was supported by the EPSRC Project NCNR (EP/R02572X/1).

References

- [1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, "Asynchronous methods for deep reinforcement learning," in *Proc. of Int. Conf. Mach. Learn. (ICML)*, 2016.
- [2] D. Pathak, A. E. P. Agrawal, and T. Darrell, "Curiosity-driven exploration by self-supervised prediction," in *Proc. of Int. Conf. Mach. Learn. (ICML)*, 2017.
- [3] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, "Curiosity-driven exploration for mapless navigation with deep reinforcement learning," in *Proc. of ICRA Workshop on Machine Learning in Planning and Control of Robot Motion*, 2018.
- [4] F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face recognition and clustering," in *Proc. of IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, 2015.
- [5] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, "Vizdoom: A doom-based AI research platform for visual reinforcement learning," in *Proc. of IEEE Conf. Comput. Intell. Games (CIG)*, 2016.