

-the-Fly Native I	Ensemble		$\Delta \gamma$	7			
u ² Shaogang Gong ¹			\sim		dvance	es in l	Neura
tics.com <u>s.gong@qmu</u>	l.ac.uk		A	$\int \mathbf{c}'$	iorma		roces
ondon, UK ² Vision	Semantics Ltd	\mathbf{P}	∇		/Stem:	5	
	3. Experiments						
v Native Ensemble	➢ CIFAR and SV⊦	IN tests					
	Method		CIFAR10	CIFA	R100 S'	VHN	Params
Ensemble Ensemble	ResNet-32		6.93	31.18	3 2.	11	0.5M
Logits Predictions $n_{1}e$	$\frac{\text{ResNet-32} + \text{ONE}}{\text{ResNet-110}}$		5.99±0.(5.56	25.3	$\frac{1\pm0.061}{3}$.83±0.05	0.5M
× L ^{re} L ^r ce	ResNet-110 + ONE		5.17±0.0	0721.6	2±0.261	.76±0.07	1.7M
L_{kl}^0	ResNeXt-29($8 \times 64d$) + ResNeXt-29($8 \times 64d$) +	ONE	3.69 3.45+0.(17.7 04 16.0	7 1. 7+0.081	.83 . 70+0.0 3	34.4M
	DenseNet-BC(L=190, I	k=40)	3.32	17.53	3 1.	.73	25.6M
$\otimes \longrightarrow \widetilde{p_e}$	DenseNet-BC(L=190, I	k=40) + ONE	3.13±0.0	07 16.3	5±0.05 1.	.63±0.05	25.6M
L1klOn-the-FlyKnowledge		Method			Top-1	Top-	5
Distillation	>ImageNet	ResNet-18 [He et al., 2016]			30.48 10.98 20.45 \ 0.22 10.41 \ 0.12		
	test	ResNeXt-50 [Xie et al., 2017]			29.45±0.2510.41±0.12 22.62 6.29		
L_{kl}^m		$\frac{\text{ResNeXt-50}}{\text{SeNet ResNet}}$	ONE	al 201	21.85±	0.075.90	±0.05
		SeNet-ResNet-	$18 + \mathbf{ON}$	E	29.02 ±	0.17 10.1	
esNet-110 by the proposed On- Infigure the network by adding	>Knowledge Dis	tillation a	nd Er	isem	ble C	ompa	risons
s makes an individual model,	Target Network	Res	Net-32		R	esNet-11	0
F1.	Metric	Error (%)	TrCost	FeCost	Error (%)) TrCo	st TeCost
	KD [Hinton et al., 2015	5] 28.83	6.43	1.38	N/A	N/A	N/A
ation, each serving as	OML [Zhang et al., 20]	$\frac{17}{29.03\pm0.22}$	* 2.76 6 2.28	1.38	24.10±0 21.62±0	.72 10.1	0 5.05 5.05
•	Network			Viet 20		DecNet	110
	Metric	E	Fror (%)	vet-32 TrCostT	eCost Erro	r (%)TrC	ost TeCost
branches to build a	Snopshot Ensemble [Huar	ng et al., 2017]	27.12	1.38	6.90 23.	.09* 5.0	15 25.25
$\mathbf{z} = \sum_{m=1}^{m} \sigma_{m} \mathbf{z}_{m}$	3-Net Ensemble		20 .75 25.14	4.14	4 .14 21		10 10.10 15 15.15
$z_e - \sum_{i=0}^{g_i \cdot z_i}$	ONE-E		24.63	2.28	2.28 21	03 8.2	9 8.29
emperature of T for	ONE		20.01	2.28	1.38 21	62 8.2	9 5.05
	Effect of On-the	e-Fly Kno	owledg	ge D	istillat	ion	
$\exp(\mathbf{z}_{e}^{c}/T)$	50		50 	N L			
$\frac{1}{\sum_{i=1}^{C} \exp(\mathbf{z}_{e}^{j}/T)}, c \in \mathcal{Y}$			40	Mr.			anilla (Train) anilla (Test) NE (Train)
	40		40	With	Marine Miller and a		NE (Test) NE-E (Train)
anch:			(%) 30) _		Mont Minday		NE-E (Test)
	20		ол Ш 20-			human	
			10-		Mar		
$\mathcal{L}_{e}^{e} + \mathcal{L}_{ce}^{e} + \mathcal{T}^{2} * \mathcal{L}_{kl}$	0 0 50 100 150 2 Epoch	200 250 300	0 - 0	50	100 1! Ep	50 200	250 30
ade to higher correlations	5 Poforonco						
he learning constraint from	J. Reference						
ation loss;	[1] G. Hinton, et al. "Dis	stilling the kn	nowledg	e in a	neuralı	networł	k." arXiv

 ONE yields superior mean model generalisation capability with lower error rate 26.61 vs 31.07 by ME.

v, 2015. [2] Y. Zhang, et al. "Deep mutual learning." CVPR, 2018.

sing

