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GP spectrogram = NMF weights (W) × positive modulator GPs (gn(t))
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Figure 1: Nonstationary modelling of audio data. The input (bottom) is a sound

recording of female speech. We seek to decompose the signal into Gaussian process

carrier waverforms (blue block) multiplied by a spectrogram (red block). The spec-

trogram is learned from the data as a nonnegative matrix of weights times positive

modulators (top).
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Overview: Nonstationary modelling of audio data. Input (bottom) is a recording
of female speech. We decompose the signal into Gaussian process carrier
waveforms (blue block) multiplied by a spectrogram (red block). The spectrogram
is learned from the data as a nonnegative matrix of weights times positive
modulators (top).

OVERVIEW

I Utilise prior knowledge to learn from a single audio
recording.

I Time-frequency (TF) analysis and nonnegative
matrix factorisation (NMF) are ubiquitious in signal
processing, but are always treated as disjoint,
deterministic methods.

I We treat them probabilisticly in a joint Gaussian
process (GP) model, the GTF-NMF [2].

I A spectral mixture GP (1) models covariance as a
sum of quasi-periodic components [1]. We model the
amplitude / variance with another GP projected through
NMF-like mapping.

I Results in a nonstationary version of the spectral
mixture GP.

I We formulate the stochastic differential equation
(SDE) representation.

I Inference via expectation propagation (EP) in the
Kalman filter. Scales linearly in the number of time
steps.

I Applied to multiple signal processing tasks vs.
Extended Kalman filter (EKF) and baseline methods.

INFERENCE

I Construct SDE form of the GTF-NMF model:
df(t)
dt

= Ff(t) + Lw(t),

yk = H(f(tk)) + σyεk ,

I Inference via assumed density filtering (ADF) in the
nonlinear Kalman filter [4].
I The trick is to treat the Kalman predictions,

p(f(tk)|f(tk−1)), as the cavity distributions.
I ADF does not perform well for this highly nonlinear

likelihood model, so we implement full EP.
I Must calculate true marginal update at each time

step for nonlinear likelihood H(·) via sigma-point
integration – scales poorly with dimensionality.

I Infinite-horizon (steady state) GP solution reduces
computation to O(M2T ) complexity and O(MT )
memory (T = time steps, M = state dimensionality).

GAUSSIAN TIME-FREQUENCY + NMF

gn(t) ∼ GP(0, κ(n)g (t , t ′)), n = 1,2, . . . ,N,

zd(t) ∼ GP(0, κ(d)z (t , t ′)), d = 1,2, . . . ,D,

gn(t) are temporal NMF components and zd(t) the frequency
channels. Kernel κ(d)z is quasi-periodic. Amplitude kernel κ(n)g
typically from Matérn class.

The likelihood model:

yk =
∑

d

ad(tk) zd(tk) + σy εk ,

for square amplitudes (the magnitude spectrogram):

a2
d(tk) =

∑
n

Wd ,n ψ(gn(tk)).

Wd ,n = NMF weights,
ψ(·) = softplus mapping to enforce positivity.

NONSTATIONARY SPECTRAL MIXTURE GP

Hierarchical model with hyper-GP prior

gn(t) ∼ GP(0, κ(n)g (t , t ′))

for each component with an NMF-like positivity mapping,
α2

d(t) =
∑

n Wd ,n ψ(gn(t)), such that:

z(t) ∼ GP
(

0,
D∑

d=1

αd(t)αd(t ′) cos(ωd(t − t ′))κd(t , t ′)
)
,

yk = z(tk) + σy εk .

A GP model whose kernel is a sum of quasi-periodic functions
with time-dependent variance [3].

`d = lengthscale,
ωd = frequency.

=

RESULTS

I Same method applied to missing data synthesis,
denoising and source separation without modification.

I Full EP consistently outperforms EKF, ADF and IHGP.
I However, memory saving in IHGP allows us to process audio

signals of 6 seconds (T = 96,000,M = 123) which is not
possible with other methods.

I Outperforms baseline on missing data synthesis, but less
competitive on denoising.

I Still work to be done scaling to longer time series and larger
models.

SOURCE SEPARATION

Input audio, y

Source one: piano note C

Source two: piano note E

Source three: piano note G
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Figure 1: Infinite-horizon GP source separation example showing three
piano notes (sources) recovered from a mixture signal (top), where two
notes are played at a time in the original recording.
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MISSING DATA SYNTHESIS
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Figure 1: An example of missing data imputation with the GTF-NMF
model for each inference method with 20 iterations. Grey signal is
the ground truth, a recording of a bamboo flute. The yellow shaded
region indicates where the data is missing. Blue shaded area is the 95%
confidence region for the EP method.
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Code and resources:

https://github.com/AaltoML/

nonstationary-audio-gp

https://github.com/AaltoML/nonstationary-audio-gp
https://github.com/AaltoML/nonstationary-audio-gp

