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2. Related work
Centralised learning

1.Introduction
Objective: Training a filter in the service provider cloud on users data .
with users collaboration to preserve privacy against
* Malicious users

* Malicious service provider

Challenges

« Sensitive Information In users data

« Parameters of filter memorise training data

e Limitation

* Users upload their data to the cloud
* Service provider train the filter

» Service provider has access to the user data

Parameter Server W = W - ”AW

 Distributed learning [1,2]

» Users train a local copy of the filter on their devices SEEEEE®
« Users upload only the parameters of their filter Aw w/ Aw l I \\
» Service provider fine-tunes the filter w = w — nAw model (LI (IO (IO
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 Parameters shared among the service provider and users
* Each user should have access to data of several classes

3. Proposed approach: Distributed One-Class Learning (DOCL)

 Assume N users and one service provider
* Training a centralised N-class classifier (filter) without sending the training data and

addressing malicious users

 Decompose the global filter to N one-class classifiers

* Distribute N one-class classifiers among N users

 Each user locally trains a one-class autoencoder on their private data independent of other
users
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4. Experimental results
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5.Conclusions

* The proposed filter outperforms on MNIST and IMDB than on CIFAR-10, which has a high inter-class variability
 The more similar the images in one class, the smaller the decrease In per-class and overall accuracy when the number of classes increases

A new user can join at any time by training a new one-class classifier
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