CIS centre for intelligent sensing

1. Introduction

Light attenuation degrades scene appearance

- Scattering \rightarrow lack of contrast
- Absorption \rightarrow reduced colour intensity
- Depends on wavelength and water composition
- More observable for red light in open ocean water [1]
- Quantified by attenuation coefficient β
- Residual intensity after distance $d = e^{-\beta d}$ [2]
- Significant effect over large vertical depth range

Objective

- To compensate for colour loss along scene-to-camera distance
- To restore the appearance of scene as closer to camera
- To preserve the colour of water

3. Proposed method

Estimation of t(x, y)

- Different for each colour channel
 - Derive $t^{g}(x, y)$ and $t^{b}(x, y)$ from $t^{r}(x, y)$
- Estimation of $t^r(x, y)$
 - Complementary information from attenuation • Scattering $t^{text}(x, y)$: Laplacian pyramid
 - Absorption $t^{ARC}(x, y)$: Red Channel Prior [3]
 - $\min\left(1-I^r(x,y),I^g(x,y),I^b(x,y)\right)\to 0$
 - To avoid overcompensating red intensity channel $\tilde{t}^{r}(x,y) = \max\left(t^{text}(x,y), t^{ARC}(x,y)\right)$

 $t^{text}(x,y)$

BACKGROUND LIGHT ESTIMATION FOR DEPTH-DEPENDENT UNDERWATER IMAGE RESTORATION Chau Yi Li, Andrea Cavallaro Queen Mary U

Estimation of A(x, y)

- Select *A* from candidate regions
 - Constraints for candidates of A
 - Ratio constraint from oceanology study [5]: green or
 - $\frac{1}{ab} < 0.8280$ < 0.9101 and
 - Variance constraint: flat region
 - Candidate regions: region proposals [6] with 50% pixels constraints
 - Select A from pixel location

$$(x^*, y^*) = \underset{(s,t)\in I(x,y)}{\arg \max} \left(\max \left(I^g(s,t), I^b(s,t) \right) - I^r(s) \right)$$

- Estimate A(x, y)
 - Attenuation coefficient per pixel distance $\hat{\beta}$ for water pixel
 - Any water pixel *D* pixels below *A*

$$A(x, y) = Ae^{-\hat{\beta}D} \rightarrow \ln A(x, y) = \ln A - \hat{\beta}D$$

- Obtain β by linear regression with L₁ loss
- Account for discontinuity in scene-to-camera distance r()

$$A(x,y) = \mathbf{A} \exp\left(-\hat{\beta}(x-x^{*})\frac{\ln t'(x,y)}{\ln t^{r}(x^{*},y^{*})}\right)$$

Variance constraint candidates

Candidate regions for *A*

Jniversity of London, UK			
	2. Underwater image formation I		
	Captu	red image $I(x, y)$	Transmi • Depe • $t(x, y)$ = $t(x, y)$
oubblevision.com	Scene • Nor • To I	radiance n-attenuated be recovered	l propagati d
	 Challenges Underdetermine Non-uniform A(x) 	d system, of , y): unknow	ten overco /n $β$ and ve
or blue colour Is fulfilling both	 4. Evaluation Criteria Preservation of the colour of water Mean Square Error (MSE) of manu water pixels before and after restoration Online subjective experiment (Subj.) Compare with the original image, set 'the most attractive image' from all it. Report average % of method being Experiment 60 test images collected online Each image evaluated ≥ 18 times in Subset. 		
xels	Results		
	MSE (upit = 0.01)		BLA [8]
	Subi $(\%)$	1.90	30 9
		10.0	00.0
	 5. Conclusion Restore appearance for non-water scen red intensity channel Preserve the colour of water by Physics based selection of global based Estimation of non-uniform backgrour 		

Reference

[1] Schechner and Karpel, "Clear underwater vision," in CVPR 2004. [2] Swinehart, "The Beer-Lambert law," in J. Chem. Educ. 1962. [3] Galdran et al., "Automatic Red-Channel underwater image restoration," in J. Visual Comm. And Image Representation 2015. [4] Levin et al., "A closed form solution to natural image matting," in TIP 2007. [5] Zhao et al., "Deriving inherent optical properties from background color and underwater image enhancement," in O. Eng 2014. [6] Pont-Tuset et al., "Multiscale combinatorial grouping for image segmentation and object proposal generation," in TPAMI 2017. [7] Chiang and Chen, "Underwater image enhancement: Using wavelength compensation and image dehazing," in TIP 2012. [8] Peng and Cosman, "Underwater image restoration based on image blurriness and light absorption," in TIP 2017.

J(x,y)

model [1]

ompensates for red intensity channel rertical depth range

nes without overcompensating for

ackground light A nd light A(x, y) without prior knowledge

