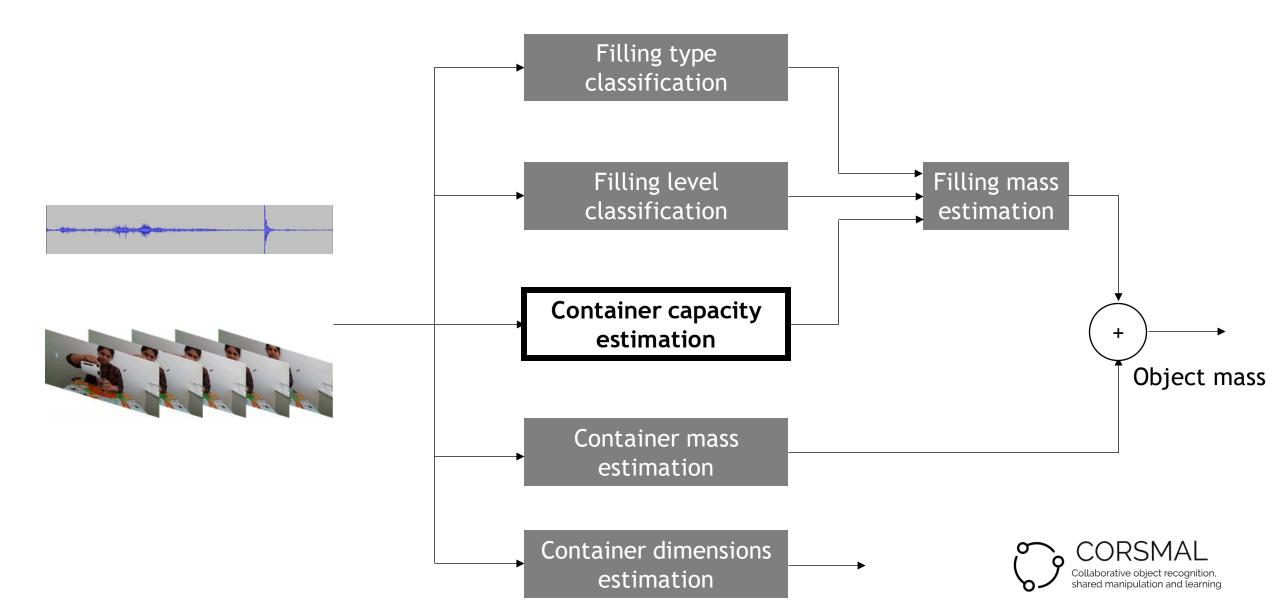


2021 Intelligent Sensing Winter School

The CORSMAL challenge

10 December 2021


Introduction to the challenge

Can you estimate the properties of a container manipulated by a human?

Physical properties estimation

Task for the Winter School

SX: setup {0,1,2}

Containers and data splits for Winter School challenge

Training set (684 audio-visual recordings)

Test set

84 audio-visual recordings/glass84 audio-visual recordings/cup60 audio-visual recordings/box

Presentations by the teams and Q&A with the panel

Dr. Lin Wang

Vandana Rajan

Yik Lung Pang

Chau Yi Li

Dr. Riccardo Mazzon

Audio signal processing

Audio-visual fusion CORSMAL Challenge co-organisers (vision, robotics) Vision, image processing

Audio-visual, 3D geometry

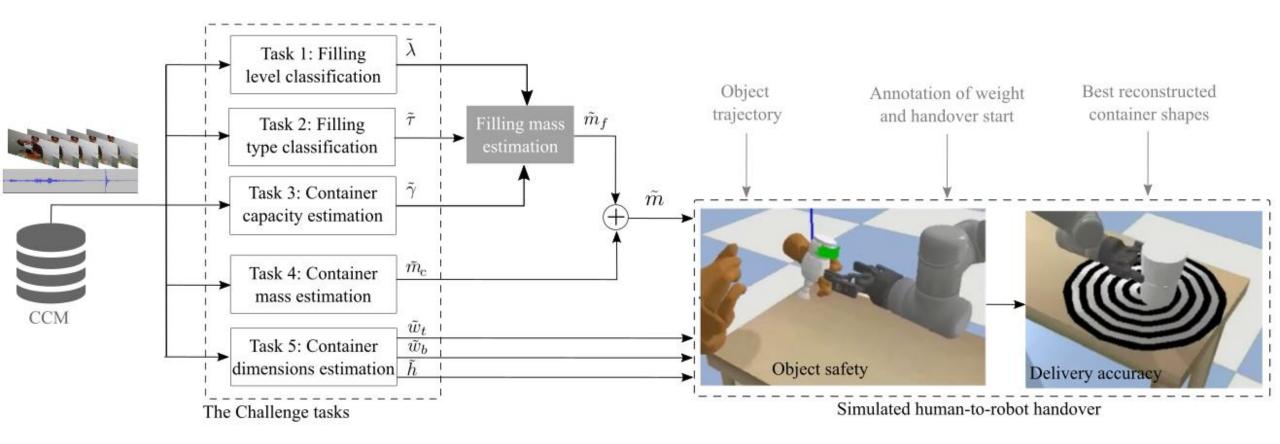
If you need a certificate of attendance, email <u>cis-web@eecs.qmul.ac.uk</u>

The Challenge is not over!

The CORSMAL challenge:

Audio-visual object classification for human-robot collaboration

https://corsmal.eecs.qmul.ac.uk/challenge.html


in conjunction with the 2022 IEEE International Conference on Acoustic, Speech and Signal Processing

Free registration: <u>online form</u> (or send this <u>form</u> to <u>corsmal-challenge@qmul.ac.uk</u>)

5 tasks, 10 performance scores, 1 real-to-simulation framework 10 leaderboards, 2 winners

Physical properties estimation of unknown containers

Code of the real-to-simulation framework: https://github.com/CORSMAL/safe_handover/

Towards safe human-to-robot handovers of unknown containers

Y. Pang, A. Xompero, C. Oh, and A. Cavallaro IEEE Int. Conf. Robot and Human Interactive Comm. (RO-MAN), 8-12 August 2021. 15 containers (5 cups, 5 drinking glasses, 5 food boxes) 3 filling types 3 filling levels

multi-view + multi-channel audio 4 views: 2 first-person + stereo pair 8 microphones: circular array

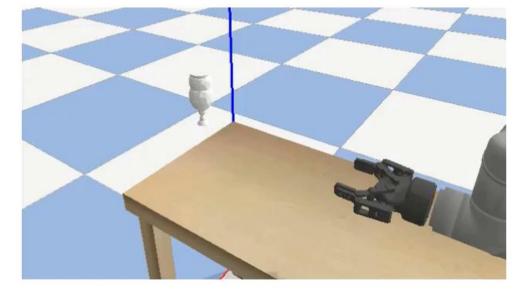
CORSMAL Containers Manipulation dataset

1,140 audio-visual recordings drinking glass: **84** cup: **84** food box: **60**

12 people 3 scenarios 2 backgrounds 2 illuminations


http://corsmal.eecs.qmul.ac.uk/containers_manip.html

Annotations Filling type & level Container volume Container & filling masses CORSMAL Collaborative object recognition, shared manipulation and learning


Real-to-simulation framework

RGB video

Object manipulation

Perceptual estimations + Annotations Simulation

Object manipulation

Evaluation

	/	erjonnun					
public testing set	Description	Unit	Measure	Score			
(3 unseen containers,228 configurations)	Filling level		λ^j	$s_1 = F_1(\lambda^1, \dots, \lambda^J, \hat{\lambda}^1, \dots, \hat{\lambda}^J)$			
ZZO CONTIGUIACIONS)	Filling type		$ au^j$	$s_2 = F_1(\tau^1, \dots, \tau^J, \hat{\tau}^1, \dots, \hat{\tau}^J)$			
private testing set	Capacity	mL	γ^j	$s_3 = \frac{1}{J} \sum_{j=1}^J \mathbb{1}e^{-\varepsilon^j (\gamma^j, \hat{\gamma}^j)}$			
(3 unseen containers,	Width at top	$\mathbf{m}\mathbf{m}$	w_t^j	$s_4 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{1}\sigma_1(w_t^j, \hat{w}_t^j)$			
228 configurations)	Width at bottom	$\mathbf{m}\mathbf{m}$	w_b^j	$s_5 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{1}\sigma_1(w_b^j, \hat{w_b}^j)$			
combined public G	Height	$\mathbf{m}\mathbf{m}$	h^j	$s_6 = \frac{1}{J} \sum_{j=1}^J \mathbb{1}\sigma_1(h^j, \hat{h}^j)$			
combined public & private testing sets	Container mass	g	m_c^j	$s_7 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{1}e^{-\varepsilon^j (m_c^j, \hat{m}_c^j)}$			
	Filling mass	g	m_f^j	$s_8 = \frac{1}{J} \sum_{j=1}^{J} \mathbb{1}e^{-\epsilon^j (m_f^j, \hat{m}_f^j)}$			
	Object mass (container $+$ filling)	g	m^{j}	$s_9 = \frac{1}{J} \sum_{j=1}^J \mathbb{1} \psi^j(m^j, \hat{F}^j)$			
	Container pose at delivery	(mm, $^\circ)$	$\scriptstyle (\alpha^j,\beta^j)$	$s_{10} = \frac{1}{J} \sum_{j=1}^{J} \Delta_j(\alpha^j, \beta^j, \eta, \phi)$			

Performance scores

Details: <u>https://corsmal.eecs.qmul.ac.uk/resources/challenge/PerformanceScores.pdf</u>

Evaluation toolkit: <u>https://github.com/CORSMAL/CORSMALChallengeEvalToolkit</u>

Ranking and rules

- Overall ranking:
 - aggregation of the performance scores
 - weighed based on the number of submitted tasks
 - filling mass & object mass: using random case results if one (or more) of the tasks is (are) not submitted by a team

• Winners:

- team with the best-performing solution (highest score, above 60);
- team with the most innovative solution (as judged by the organisers among the submissions with score above 60).
- Valid submissions:
 - must have the source code (evaluation on private test set)
 - not reproducible source codes: 0 score

Additional rankings (recognition of best-performing solution)

joint filling type & level classification container capacity & dimensions estimation filling mass estimation filling level estimation container capacity estimation container mass estimation

Additional info at: <u>https://corsmal.eecs.qmul.ac.uk/challenge.html</u>

Leaderboards (1/2)

Combined CCM test sets

Team	T1	T2	Т3	T4	T5	s1 🔺	s2 🌰	s3 🌰	s4 🌰	s5 🔺	s6 🔺	s7 🔺	s8 🌰	s9 🔺	s10 📥	0 🔻
BIT	~	~	~			79.65	94.26	60.57	0.00	0.00	0.00	0.00	65.46	0.00	0.00	37.49
HVRL	~	~	~			78.56	96.95	54.79	0.00	0.00	0.00	0.00	61.77	0.00	0.00	36.51
Average	~	~	~	~	~	33.15	23.01	40.73	76.89	58.19	64.32	22.06	51.44	0.00	0.00	29.61
Concatenation	~	~	~			43.53	41.83	62.57	0.00	0.00	0.00	0.00	63.54	0.00	0.00	26.43
NTNU		~	~			0.00	86.89	67.30	0.00	0.00	0.00	0.00	39.91	0.00	0.00	24.26
Random	~	~	~	~	~	33.15	23.01	23.78	32.33	25.36	42.48	29.42	40.32	0.00	0.00	22.88
Challengers	~	~				48.71	75.24	0.00	0.00	0.00	0.00	0.00	26.50	0.00	0.00	18.81

CCM public test set

Team	T1	T2	Т3	T4	T5	s1 🔺	s2 🔺	s3 🌰	s4 🌰	s5 🔺	s6 🔺	s7 🔺	s8 🔺	s9 🔺	s10 🔺	0 🔻
HVRL	✓	~	~			82.63	97.83	57.19	0.00	0.00	0.00	0.00	63.52	0.00	0.00	37.65
BIT	~	~	~			78.14	93.83	60.56	0.00	0.00	0.00	0.00	66.17	0.00	0.00	37.34
Average	~	~	~	~	~	33.42	22.91	54.39	79.56	65.53	82.90	21.88	59.48	0.00	0.00	33.51
Concatenation	~	~	~			44.31	41.77	63.00	0.00	0.00	0.00	0.00	62.32	0.00	0.00	26.42
Random	~	~	~	~	~	33.42	22.91	31.63	26.82	22.55	50.34	30.59	44.04	0.00	0.00	24.48
NTNU		~	~			0.00	81.97	66.92	0.00	0.00	0.00	0.00	41.65	0.00	0.00	23.82
Challengers	~	~				50.73	78.58	0.00	0.00	0.00	0.00	0.00	29.36	0.00	0.00	19.83

Leaderboards (2/2)

Container capacity estimation

Team 🔺	Input modalities						Publ 🔶	Priv 🔺	Comb 🔻			
		View 1		View	ew 2 View 3		ew 3 View 4		4			
	Α	RGB	D	RGB	D	RGB	D	RGB	D			
NTNU							~			66.92	67.67	67.30
Concatenation		~		~		~		~		63.00	62.14	62.57
BIT		~		×						60.56	60.58	60.57
HVRL		~	~							57.19	52.38	54.79
Average										54.39	27.08	40.73
Random										31.63	15.92	23.78

Container mass estimation

Team 🔺	Input modalities I									Publ 🔺	Priv 🔺	Comb 🔻
		View 1		View 2		View 3 View 4						
	Α	RGB	D	RGB	D	RGB	D	RGB	D			
Random										30.59	27.58	29.08
Average										21.88	21.88	21.88

Joint filling type and level classification

Team 🔺	Publ 🔺	Priv 🔺	Comb 💌
HVRL	82.14	73.40	77.81
BIT	75.00	77.86	76.45
Challengers	40.61	38.34	39.55
VA2M	24.59	23.98	24.32
Random	9.73	7.87	8.88

Container dimensions and capacity estimation

Team 🔺	Publ 🔶	Priv 🔺	Comb 💌
Average	65.19	42.01	53.60
NTNU	33.46	33.84	33.65
VA2M	31.50	31.07	31.28
BIT	30.28	30.29	30.28
Random	32.43	24.73	28.58
HVRL	28.59	26.19	27.39

Input modalities Publ A Priv Comb Ŧ Team View 2 View 3 View 4 View 1 A RGB D RGB D RGB D RGB D ~ ACC 80.22 81.46 80.84 ~ \checkmark ~ ~ ~ BIT 78.14 81.16 79.65 ~ HVRL 82.63 74.43 78.56 ZCR+MFCC+RF ~ 70.04 63.11 66.80 ~ A5F+RF 64.18 63.94 64.74 ZCR+MFCC+SVM ~ 66.27 57.19 61.87 ~ A5F+SVM 60.77 58.57 60.09 ZCR+MFCC+kNN ~ 63.63 54.97 59.35 ~ Spectrogram+kNN 59.15 53.47 56.38 ~ A5F+kNN 55.49 53.22 54.47 ~ Spectrogram+SVM 47.66 51.54 49.67 ~ 50.73 47.08 Challengers 48.71 ~ Mask R-CNN + RN18 58.51 32.93 47.00 ~ 45.43 45.59 45.49 Spectrogram+RF ~ Spectrogram+PCA+RF 46.79 42.46 44.66 \checkmark \checkmark ~ \checkmark ~ 44.31 42.70 43.53 Concatenation ~ Mask R-CNN + RN18 48.90 26.73 39.00 Spectrogram+PCA+k... 39.03 37.16 38.31 Random 33.35 41.86 37.62 Spectrogram+PCA+S... 30.08 31.99 31.64 Mask R-CNN + RN18 ~ 36.52 25.52 31.46 \checkmark Mask R-CNN + RN18 25.12 21.99 23.68

Filling mass estimation

Team 🔺	т1	Т2	тз	Publ 🔶	Priv 🔶	Comb 🔻
BIT	~	~	~	64.98	65.15	65.06
HVRL	~	~	~	63.32	61.01	62.16
Concatenation	~	~	~	52.80	54.14	53.47
NTNU-ERC		~	~	38.56	39.80	39.18
Random	~	~	~	43.61	31.65	35.06
Average	~	~	~	59.05	59.05	35.06
Challengers	~	~		29.25	23.21	26.23
ACC	~	~		28.25	21.89	25.07
Mask R-CNN + R	~	~		19.46	9.59	14.53
Mask R-CNN + R	~	~		15.15	9.96	12.56
Mask R-CNN + R	~	~		17.28	6.99	12.14
Mask R-CNN + R	~	✓		12.95	10.25	11.60

Filling level classification

Schedule

Public training set available for download	November 10, 2021
Release of the password for the public test set	January 10, 2022
Submission of papers , estimation results on the public test set, & source code	January 24, 2022
Paper acceptance notification	February 10, 2022
Release of the results on the leaderboards	February 10, 2022
Camera-ready papers for ICASSP 2022 Proceedings due	February 16, 2022

All deadlines are 11.59pm PDT

You may complete, extend, and submit your solution Opportunity to submit a <u>scientific paper</u> about your solution

2022 IEEE International Conference on Acoustic, Speech and Signal Processing 22-27 May 2022, Singapore

2021 Intelligent Sensing Winter School

Thank you!

