

Target speech extraction

Marc Delcroix

Copyright 2021 NTT CORPORATION

Collaborators

K. Zmolikova¹

K. Kinoshita

H. Sato

Y. Ohishi

A. Ogawa

N. Tawara

T. Nakatani

S. Araki

¹Brno University of Technology

Cocktail party-effect

Humans can focus their attention intentionally on a specific sound signal (Selective hearing)

Realized using various clues [Darwin+00]

- Locational,
- Speaker voice characteristics,
- Visual,

→ Can follow a conversation at a cocktail party

Target speech extraction (TSE)

Computational selective hearing

i.e. Extract speech of a target speaker in a mixture given speaker clues

Copyright 2021 NTT CORPORATION

Target speech extraction (TSE)

Computational selective hearing

i.e. Extract speech of a target speaker in a mixture given speaker clues

Copyright 2021 NTT CORPORATION

Demo video

Demo of audio-clue-based TSE (SpeakerBeam)

- (1) Record enrollment
- (2) TSE demo: man + woman

https://www.youtube.com/watch?v=7FSHgKip6vI

Classical approaches

Fixed beamformer

- Extract signal from a fixed direction
- \otimes Requires knowing the position of the target speaker
- \rightarrow Lack of flexibility

Separation

- Separate mixture into all its source signals
- ⊗ Requires knowing/estimating number of speakers
- ☺ Speaker-output ambiguity
 - \rightarrow Need to be combined with some speaker identification
 - \rightarrow Cascade separation+ speaker identification is not optimal for TSE

Classical approaches

Fixed beamformer

- Extract signal from a fixed direction
- $\ensuremath{\otimes}$ Requires knowing the position of the target speaker
- \rightarrow Lack of flexibility

Separation

- Separate mixture into all its source signals
- ⊗ Requires knowing/estimating number of speakers
- ☺ Speaker-output ambiguity
 - \rightarrow Need to be combined with speaker identification
 - \rightarrow Cascade separation+ speaker identification is not optimal for TSE

Copyright 2021 NTT CORPORATION

Advantages of TSE

By exploiting speaker clues, TSE avoids the limitations of previous schemes

- So need to know the speaker location
- $\ensuremath{\textcircled{}^\circ}$ $\ensuremath{\:^\circ}$ No need to know the number of speakers
- © No speaker-output ambiguity
- Optimal

TSE made possible recently thanks to progress in speech enhancement/separation, speaker identification

Especially, deep-learning enabled optimized TSE systems

- 2017, showed possibility with **audio clues** [Zmolikova17]
- 2018, showed possibility with video clues [Afouras+18, Ephrat+18,Owens +18]
 Since then,
- Rapid progress following development of neural speech enhancement/separation/speaker identification

Audio-clue-based extraction TSE

Use an enrollment utterance of the target speaker (few seconds of audio) to inform which voice to extract in the mixture [Zmolikov+17]

→ Speech separation & Speaker identification at once

Audio-clue-based extraction TSE

Use an enrollment utterance of the target speaker (few seconds of audio) to inform which voice to extract in the mixture [Zmolikov+17]

- → Speech separation & Speaker identification at once
- Various ways to implement audio-clue-based TSE
 - What speaker embeddings?
 - i-vectors, d-vectors [Wang+19], jointly-learned [Zmolikova+17b]
 - What type of extraction networks?
 - Fusion layer: Concatenation[Wang+19, Xu+19], Multiplication[Delcroix+19a], Factorized layer [Zmolikova+17a], Attention [Xiao+19, Li+19]
 - > BLSTM, CNN etc,
 - > Frequency domain, Time-domain
 - > Regression, Mask

Audio-clue-based extraction TSE

Use an enrollment utterance of the target speaker (few seconds of audio) to inform which voice to extract in the mixture [Zmolikov+17]

- → Speech separation & Speaker identification at once
- Various ways to implement audio-clue-based TSE
 - What speaker embeddings?
 - > i-vectors, d-vectors [Wang+19], jointly-learned [Zmolikova+17b]
 - How to integrate embeddings (fusion layer)?
 - Concatenation[Wang+19, Xu+19], Multiplication[Delcroix+19a],
 Factorized layer [Zmolikova+17a], Attention [Xiao+19, Li+19]
 - What type of extraction networks
 - > BLSTM, CNN etc,
 - > Frequency domain, Time-domain
 - > Regression, Mask

SpeakerBeam

Delcroix et al. "Improving speaker discrimination of target speech extraction with time-domain SpeakerBeam," ICASSP, 2020.

• Time-domain SpeakerBeam

SpeakerBeam

Delcroix et al. "Improving speaker discrimination of target speech extraction with time-domain SpeakerBeam," ICASSP, 2020.

- Time-domain SpeakerBeam
- Tested on MC-WSJ-2mix (reverberant)
- Evaluation metric: Signal-to-distortion (SDR) [dB]

Sound demo

Mixture

Code: https://github.com/BUTSpeechFIT/speakerbeam

	💭 Jupyter	SpeakerBeam_demo_notebook Last Checkpoint: 18 minutes ago (autosaved)	ŕ	Logout
	File Edit V	ew Insert Cell Kernel Widgets Help	Trusted	Python 3 O
	₽ + % 4	Run ■ C ⇒ Code		
	In [23]:	<pre>import matplotlib.pyplot as plt import numpy as np from pathlib import Path import yaml import torch import random mort IPython.display as dsp from models.td_speakerbeam import TimeDomainSpeakerBeam from datasets.librimix_informed import LibriMixInformed</pre>		
	In [10]:	<pre>1 confpath = Path('/egs/libri2mix/exp/train_patience4/conf.yml') 2 modelpath = Path('/egs/libri2mix/exp/train_patience4/checkpoints/epoch=129-step=602289.ckpt')</pre>		
Copyright 2021 NTT CORP	In [12]:	1 with open(confpath) as f:		

Extension to target sound extraction

Extension to non-speech signals

→ Extract target *sound* from a *mixture of sounds*

Copyright 2021 NTT CORPORATION

2 ways to realize

Enrollment-based approach

[Zmolikova+17, Lee+19, Gfeller+21]

1-hot-based approach

+ Combination of both: Delcroix et al., "Few-Shot Learning of New Sound Classes for Target Sound Extraction," Interspeech 2021 Copyright 2021 NTT CORPORATION

Copyright 2021 NTT CORPORATION

SDR improvement: 13.54 dB

Copyright 2021 NTT CORPORATION

Conclusion

- Target speech/sound extraction is a promising way to tackle the cocktail party problem
- Idea can be applied to other problems:
 - Audio-visual extraction [Afouras+18, Ephrat+18]
 - Target speaker ASR [King+17, Delcroix+18, Kanda+19, Delcroix+19, Denisov+19]
 - Target speaker VAD [Ding+20, Medennikov+20]
 - EEG-based attentive listening [O'Sullivan+14, Aroudi+20]
- To dig further:
 - Demo video of SpeakerBeam: <u>https://www.youtube.com/watch?v=7FSHgKip6vI</u>
 - Slide of Interspeech tutorial: <u>https://butspeechfit.github.io/tse_tutorial</u>
 - SpeakerBeam implementation: <u>https://github.com/BUTSpeechFIT/speakerbeam</u>

Thank you!

Questions? Email me at marc.delcroix@ieee.org

Copyright 2021 NTT CORPORATION

19