# Mixup Augmentation for Generalizable Speech Separation

Ashish Alex<sup>1</sup>, Lin Wang<sup>1</sup>, Paolo Gastaldo<sup>2</sup>, Andrea Cavallaro<sup>1</sup>

Centre of Intelligence Sensing, Queen Mary University of London
 DITEN, University of Genoa

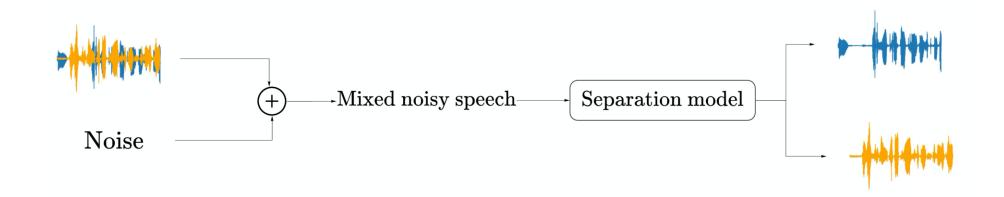
MMSP 2021







• Single channel speech separation in noisy environments



• Applications: Hearing aids, captioning & transcription (YouTube), human robotic interaction, automatic speech recognition







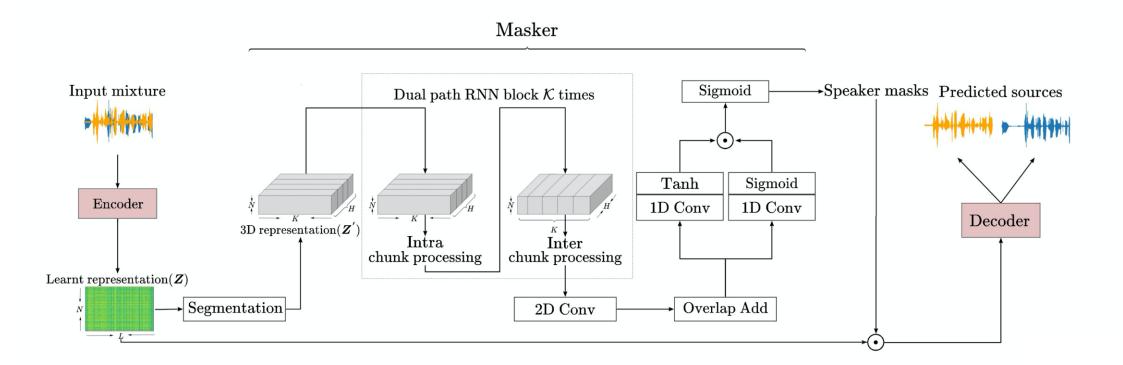
- Motivation
  - Improve generalization of separation models across datasets
  - Improve separation performance in unseen noisy conditions
  - Traditional regularization techniques, augmentations did not improve generalization
- Contributions
  - o Extend Mixup augmentation and variations for time-domain speech separation
  - Proposed Data-only Mixup improves inter corpus separation performance







# Separation model architecture



#### Fig. DPRNN [1] separation model

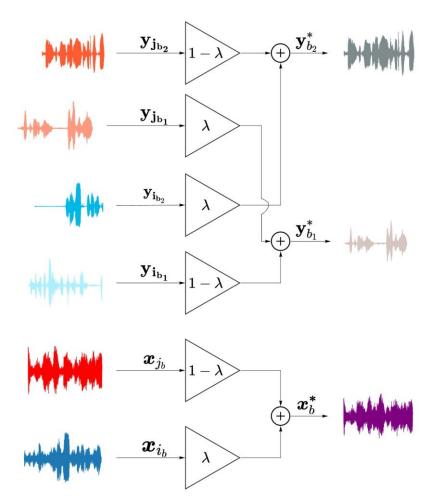
[1] Luo et al., Dual-path RNN: efficient long sequence modelling for time-domain single-channel speech Separation, in Proc. Interspeech, 2019.

CIS centre for intelligent sensing





Mixup



 $x_{i_b}, x_{j_b}$ : Two distinct mixtures from the mini-batch  $y_{i_{b_1}}, y_{i_{b_2}}$  and  $y_{j_{b_1}}, y_{j_{b_2}}$ : ground-truth speech

 $x_b^*$ : Augmented mixture  $y_{b_1}^*$  and  $y_{b_2}^*$ : Augmented ground truth speech

$$\lambda = beta(\alpha, \beta)$$







## Mixup variants

• Complete Mixup: Augment training data using Mixup for all epochs

 $\mathcal{L}_{CP} = \mathcal{L}_{augment}, \quad 0 < e < E_{max}$ 

 $E_{max}$ : Maximum number of epochs for training

 Partial Mixup: Regular training in initial epochs followed by Mixup Augmentation in subsequent epochs

$$\mathcal{L}_{\text{PA}} = \begin{cases} \mathcal{L}_{\text{regular}}, & 0 < e \leq E_{\text{early}} \\ \mathcal{L}_{\text{regular}}, & (E_{\text{early}} < e < E_{\text{max}}) \land (e|Q \neq 0) \\ \mathcal{L}_{\text{augment}}, & (E_{\text{early}} < e < E_{\text{max}}) \land (e|Q = 0) \end{cases}$$

 $E_{max}$ : Maximum number of epochs for training

 $E_{early}$ : Number of epochs until which Augmentation is applied for







• Pretrained Mixup: Fine tune a pretrained model using Mixup Augmentation

$$\mathcal{L}_{\text{PT}} = \begin{cases} \mathcal{L}_{\text{regular}}, & 0 < e \leq E_{\text{max}} \\ \mathcal{L}_{\text{augment}}, & E_{\text{max}} < e < E_{\text{pt}} \end{cases}$$

 $E_{pt}$ : Maximum number of epochs pre-trained model is finetuned for

- Data only Mixup
  - $\circ\,$  Apply Mixup on mixtures only
  - $\,\circ\,$  Keep ground truth as most dominant sources in Mixup augmented mixture

$$egin{aligned} oldsymbol{x}_b^\circ &= \lambda oldsymbol{x}_{i_b} + (1-\lambda) oldsymbol{x}_{j_b} \ oldsymbol{Y}_b^\circ &= oldsymbol{Y}_{i_b} \ \mathcal{L}_{ ext{DO}} &= \mathcal{L}(oldsymbol{Y}^\circ, oldsymbol{\hat{Y}}^\circ), \quad 0 < e < E_{ ext{max}} \end{aligned}$$







## **Experiments & datasets**

| Dataset     | Split     | Hours | Speakers | Noise corpus        |
|-------------|-----------|-------|----------|---------------------|
| LibriMix[2] | train-100 | 58    | 251      | WHAM[5]             |
| LibriMix[2] | test      | 11    | 40       | WHAM[5]             |
| VCTK[3]     | test      | 9     | 109      | WHAM[5]             |
| TIMIT[4]    | test      | 10    | 630      | Env noise corpus[6] |

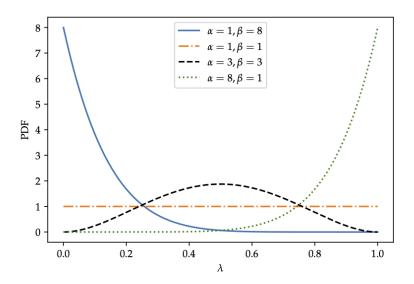
- Intra corpus Train on LibriMix (train-100) & test on LibriMix (test)
- Inter corpus Train on LibriMix (train-100) & test on TIMIT (test) and VCTK (test)

[2] Cosentino et al., LibriMix: An Open-Source Dataset for Generalizable Speech Separation, arXiv preprint arXiv:2005.11262
[3] C. Veaux et al., Superseded-CSTR VCTK corpus: English multispeaker corpus for cstr voice cloning toolkit, 2016
[4] J. S. Garofolo, TIMIT acoustic phonetic continuous speech corpus, Linguistic data consortium, 1993
[5] Wichern et al., WHAM!: Extending speech separation to noisy environments, in Proc. Interspeech, 2019
[6] Xu et al. A regression approach to speech enhancement based on deep neural networks, IEEE/ACM Trans. Audio, Speech, Lang. Process., 2014

CIS centre for intelligent sensing







**Fig.** Probability density function of beta distribution with different  $\alpha$  and  $\beta$ .  $\lambda = beta(\alpha, \beta)$ 

| $\alpha ackslash eta$ | 1     | 3              | 8     |  |
|-----------------------|-------|----------------|-------|--|
| 1                     | 11.69 | 11.70          | 11.51 |  |
| 3                     | 11.64 | 11.70          | 11.64 |  |
| 8                     | 11.97 | 11.70<br>11.70 | 11.57 |  |
| (a) Complete Mixup    |       |                |       |  |

| $\alpha \setminus \beta$ | 1     | 3     | 8     |  |
|--------------------------|-------|-------|-------|--|
| 1                        | 11.17 |       | 5.89  |  |
| 3                        | 11.55 | 11.31 | 7.12  |  |
| 8                        | 12.00 | 11.51 | 11.26 |  |
| (b) Data Only Mixup      |       |       |       |  |

**Table.** SI-SNRi (dB) of data-augmented DPRNN for various values of  $\alpha$  and  $\beta$ 







| Augmentation type | Augmentation variation | SI-SNRi |
|-------------------|------------------------|---------|
| None              | -                      | 12.00   |
|                   | Frequency masking      | 11.63   |
| SpecAugment[7]    | Time masking           | 12.04   |
|                   | T-F masking            | 12.05   |
|                   | Complete               | 11.97   |
| Minun             | Data-only              | 12.00   |
| Mixup             | Partial                | 11.50   |
|                   | Pre-trained            | 12.00   |

Table: Model trained and tested on LibriMix dataset

 None of the augmented models significantly outperform non-augmented model

[7] Park et al., SpecAugment: A simple data augmentation method for automatic speech recognition, in Proc. Interspeech, 2019







| SNR  | R UAUG | SpecAugment |       | Mixup |       |       |       |       |
|------|--------|-------------|-------|-------|-------|-------|-------|-------|
| SINK |        | TM          | FM    | T-F   | PA    | PT    | СР    | DO    |
| -5   | 4.95   | 5.09        | 4.99  | 4.53  | 4.86  | 5.19  | 4.95  | 5.61  |
| 0    | 5.41   | 5.76        | 5.94  | 4.84  | 5.38  | 5.69  | 5.85  | 6.60  |
| 5    | 6.52   | 6.62        | 6.59  | 6.10  | 6.34  | 6.95  | 6.87  | 8.48  |
| 10   | 8.24   | 8.32        | 8.18  | 8.18  | 8.39  | 8.81  | 8.84  | 10.25 |
| 15   | 9.80   | 10.22       | 9.85  | 9.82  | 10.21 | 10.64 | 10.33 | 11.42 |
| 20   | 10.93  | 11.24       | 11.08 | 11.30 | 10.92 | 11.84 | 10.94 | 11.97 |
| Avg  | 7.64   | 7.87        | 7.77  | 7.46  | 7.68  | 8.13  | 7.96  | 9.06  |

**Table:** Model trained on LibriMix and tested on TIMIT dataset

- Data-only Mixup improves separation
   performance on TIMIT dataset
- Noise types & speakers in TIMIT are different from LibriMix







| Augmentation type | Augmentation variation | SI-SNRi |
|-------------------|------------------------|---------|
| None              | -                      | 11.07   |
|                   | Frequency masking      | 10.79   |
| SpecAugment[7]    | Time masking           | 11.09   |
|                   | T-F                    | 11.04   |
|                   | Complete               | 11.11   |
| Minun             | Data-only              | 11.43   |
| Mixup             | Partial                | 10.93   |
|                   | Pre-trained            | 11.06   |

Table: Model trained on LibriMix and tested on VCTK dataset

- Data-only Mixup slightly improves separation performance on VCTK dataset
- Speakers in VCTK are different from LibriMix
- Noise samples in VCTK dataset is the same as LibriMix dataset

[7] Park et al., SpecAugment: A simple data augmentation method for automatic speech recognition, in Proc. Interspeech, 2019







## Conclusion & future work

- Data-only Mixup augmentation improves cross-corpus performance for speech separation model
- Data augmentation approach doesn't incur additional in network parameters
- Future work Finding optimal augmentation combinations using learnt augmentation strategies





