Machine Learning for **Indoor Acoustics**

Antoine Deleforge Inria (Nancy - Grand Est)

Antoine.Deleforge@inria.fr

QMUL Winter School 09.12.21

« What is the shape of the room? »

« What is the shape of the room? »

« Is the floor made of tiles or carpet? »

OUTLINE

1) Intro & Background
2) Virtually-Supervised Learning
3) Examples and Results
4) Conclusions and Outlook

Antoine.Deleforge@inria.fr

QMUL Winter School 09.12.21

OUTLINE

Intro & Background Virtually-Supervised Learning Examples and Results Conclusions and Outlook

Antoine.Deleforge@inria.fr

QMUL Winter School 09.12.21

Sound Propagation

• What is sound?

- What is sound?
 - A Mechanical Vibration

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave

 $\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave
- Sound has a speed: $c \approx 343$ m/sec = 7

 $\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave
- Sound has a speed: $c \approx 343$ m/sec _____ **7**
- Sound **dissipates:** ≈ -6 dB every doubling of distance

 $\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$

Sound Propagation

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave
- Sound has a speed: $c \approx 343$ m/sec _____ **7**
- Sound **dissipates:** ≈ -6 dB every doubling of distance
- Sound Interacts:

mia

distance in meter

source

Sound Propagation

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave
- Sound has a speed: $c \approx 343$ m/sec _____ **7**
- Sound **dissipates:** ≈ -6 dB every doubling of distance

 $\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$

• Sound Interacts:

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave
- Sound has a speed: $c \approx 343$ m/sec _____
- Sound **dissipates:** ≈ -6 dB every doubling of distance
- Sound Interacts:

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave
- Sound has a speed: $c \approx 343$ m/sec _____
- Sound **dissipates:** ≈ -6 dB every doubling of distance
- Sound Interacts:

 $\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$

- What is sound?
 - A Mechanical Vibration
 - A Variation of Air Pressure
 - A 3D Wave
- Sound has a speed: $c \approx 343$ m/sec _____
- Sound **dissipates:** ≈ -6 dB every doubling of distance

 $\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$

1) Introduction

1) Introduction

1) Introduction

A signal model of reverberation?

The Room Impulse Response

- **Impulse response:** The response of an LTI system to a perfect impulse (*Dirac*).
- Room Impulse response (RIR): Captures the linear filtering effect due to the propagation of sound from a point source to a microphone inside a room

The Room Impulse Response

- **Impulse response:** The response of an LTI system to a perfect impulse (*Dirac*).
- Room Impulse response (RIR): Captures the linear filtering effect due to the propagation of sound from a **point source** to a **microphone** inside a room

Input: δ

The Room Impulse Response

- **Impulse response:** The response of an LTI system to a perfect impulse (*Dirac*).
- Room Impulse response (RIR): Captures the linear filtering effect due to the propagation of sound from a point source to a microphone inside a room

The Room Impulse Response

- **Impulse response:** The response of an LTI system to a perfect impulse (*Dirac*).
- Room Impulse response (RIR): Captures the linear filtering effect due to the propagation of sound from a point source to a microphone inside a room

The Room Impulse Response

- **Impulse response:** The response of an LTI system to a perfect impulse (*Dirac*).
- **Room Impulse response (RIR):** Captures the linear filtering effect due to the propagation of sound from a **point source** to a **microphone** inside a room

QMUL Winter School 09.12.21

The Room Impulse Response

• Can be used to « reverberate » any dry sound source signal s(t):

$$x(t) = (h * s)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} h(u)s(t-u)du \quad \stackrel{\text{Fourier}}{\longleftarrow} \quad \widetilde{x}(\omega) = \widetilde{h}(\omega)\widetilde{s}(\omega)$$

The Room Impulse Response

• Can be used to « reverberate » any dry sound source signal s(t):

$$x(t) = (h * s)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} h(u)s(t-u)du \quad \stackrel{\text{Fourier}}{\longleftarrow} \quad \widetilde{x}(\omega) = \widetilde{h}(\omega)\widetilde{s}(\omega)$$

www.openair.hosted.york.ac.uk/

12

The Room Impulse Response

• Can be used to « reverberate » any dry sound source signal s(t):

$$x(t) = (h * s)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} h(u)s(t-u)du \quad \stackrel{\text{Fourier}}{\longleftarrow} \quad \widetilde{x}(\omega) = \widetilde{h}(\omega)\widetilde{s}(\omega)$$

• Generalization to multiple microphones:

www.openair.hosted.york.ac.uk/

- Source & receivers positions & properties
- Room geometry
- Surface properties

• Surface properties

Difficult (interesting) inverse problems!

Why do we care?

Why do we care?

1) Indoor noise disturbance

Make acoustic diagnosis faster / better [16]

Why do we care?

1) Indoor noise disturbance

Make acoustic diagnosis faster / better [16]

2) Audio Augmented Reality [6, 17]

Why do we care?

1) Indoor noise disturbance

Make acoustic diagnosis faster / better [16]

2) Audio Augmented Reality [6, 17]

- 3) « Echo-Aware » Audio Signal Processing [7, 8]
 - Hearing aids
 - Vocal assistant devices

OUTLINE

Intro & Background Virtually-Supervised Learning Examples and Results Conclusions and Outlook

Antoine.Deleforge@inria.fr

QMUL Winter School 09.12.21

OUTLINE

1) Intro & Background

2) Virtually-Supervised Learning

- 3) Examples and Results
- 4) Conclusions and Outlook

Antoine.Deleforge@inria.fr

Ínría A

b) Real-Data-Driven Approaches [1, 2, 3, 6]

b) Real-Data-Driven Approaches [1, 2, 3, 6]

c) Virtually-Supervised Learning [4, 5, 9, 16, 17]

c) Virtually-Supervised Learning [4, 5, 9, 16, 17]

c) Virtually-Supervised Learning [4, 5, 9, 16, 17]

Forward

Physical Model

Ínría_

Ínría_

Ínría_

RIR Simulation Trade-offs

Realism vs. Computational complexity	Diversity vs. Training set size

Inría Antoin

	Realism vs. Computational complexity	Diversity vs. Training set size
•	Realism vs. Computational complexity Discretized wave equation solvers (e.g. FDTD) $\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$	Diversity vs. Training set size

	Realism vs. Com	putational complexity	Diversity vs. Training set size
•	Discretized wave eq	uation solvers (e.g. FDTD)	
	$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0$	 ✓ Solve everything ☑ Intractable above ~4 kHz 	

	Realism vs. Computational complexity	Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD) $\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \qquad \text{Solve everything}$ Intractable above ~4 kHz	
•	Image source method [13]	
_		

	Realism vs. Computational complexity	Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD) $\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \qquad \text{Solve everything}$ $\blacksquare \text{Intractable above ~4 kHz}$	
•	Image source method [13] ✓ Fast (for low reflection orders) ☑ Doesn't capture low-freq effects ☑ Specular reflections only 	
_		

	Realism vs. Computational complexity	Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD)	
	$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \text{Solve everything} \\ \blacksquare \text{ Intractable above ~4 kHz}$	
•	Image source method [13]	
	 Fast (for low reflection orders) Doesn't capture low-freq effects Specular reflections only 	
•	Energy-based / Ray-based / Particle-based methods	
_		

	Realism vs. Computational complexity	Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD)	
	$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \text{Solve everything} \\ \blacksquare \text{ Intractable above ~4 kHz}$	
•	Image source method [13]	
•	 Fast (for low reflection orders) Doesn't capture low-freq effects Specular reflections only Energy-based / Ray-based / Particle-based methods Versatile Doesn't capture low-freq effects Marticle - based methods Approx. TOAs 	
	*	

	Realism vs. Computational complexity	Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD)	
	$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \text{Solve everything} \\ \blacksquare \text{Intractable above ~4 kHz}$	
•	Image source method [13]	
•	 Fast (for low reflection orders) Doesn't capture low-freq effects Specular reflections only Energy-based / Ray-based / Particle-based methods Versatile Doesn't capture low-freq effects 	
_	Approx. IOAs	
•	Simulators efficiently combining the last two: RoomSim [14], Pyroomacoustics [15]	

	Realism vs. Computational complexity		Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD) $\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \qquad \text{Solve everything}$ $\blacksquare \text{Intractable above ~4 kHz}$	•	Room size? Toilet, Office, Airport Hall
•	 Image source method [13] ✓ Fast (for low reflection orders) ☑ Doesn't capture low-freq effects ☑ Specular reflections only Energy-based / Ray-based / Particle-based methods ✓ Versatile ☑ Doesn't capture low-freq effects ☑ Doesn't capture low-freq effects ☑ Approx. TOAs 		
	Simulators efficiently combining the last two: RoomSim [14], Pyroomacoustics [15]		
4	nia Antoine Deleforge@inria fr		OMUL Winter School 09 12 21 17

RIR Simulation Trade-offs

Diversity vs. Training set size

- Room size? Toilet, Office, Airport Hall
- Room shape? Shoebox, Auditorium, Underground cave

RIR Simulation Trade-offs

RoomSim [14], Pyroomacoustics [15]

RIR Simulation Trade-offs

	Realism vs. Computational complexity		Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD)	•	Room size? Toilet, Office, Airport Hall
	$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \text{Solve everything} \\ \blacksquare \text{ Intractable above ~4 kHz}$	•	Room shape? Shoebox, Auditorium, Underground cave
•	 Image source method [13] ✓ Fast (for low reflection orders) ☑ Doesn't capture low-freq effects ☑ Specular reflections only ☑ Energy-based / Ray-based / Particle-based methods 	•	Room acoustics? <i>Abbey Road studio,</i> <i>Cathedral</i> Source/receiver types? <i>Omnidirectional, Cardiod, Human</i> <i>speaker, Hearing aids</i>
	✓ Versatile ✓ Versatile ✓ Doesn't capture low- freq effects ✓ Approx. TOAs	•	Random shoebox rooms with:length/width in [2m, 10m]height in [2m, 6m]
•	Simulators efficiently combining the last two: RoomSim [14], Pyroomacoustics [15]		

Ínría_

RIR Simulation Trade-offs

Realism vs. Computational complexity	Diversity vs. Training set size
Discretized wave equation solvers (e.g. FDTD)	• Room size? Toilet, Office, Airport Hall
$\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \text{Solve everything} \\ \blacksquare \text{ Intractable above ~4 kHz}$	 Room shape? Shoebox, Auditorium, Underground cave
 Image source method [13] ✓ Fast (for low reflection orders) ✓ Decen't conturn low from offector 	 Room acoustics? Abbey Road studio, Cathedral
 Energy-based / Ray-based / Particle-based methods 	 Source/receiver types? Omnidirectional, Cardiod, Human speaker, Hearing aids
$ \begin{array}{c} $	 Random shoebox rooms with: length/width in [2m, 10m] height in [2m, 6m] Omnidirectional sources and receivers
Simulators efficiently combining the last two: RoomSim [14], Pyroomacoustics [15]	placed uniformly at random in the room with 1m « safe distance »

ı.

	Realism vs. Computational complexity		Diversity vs. Training set size
•	Discretized wave equation solvers (e.g. FDTD)	•	Room size? Toilet, Office, Airport Hall
	$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \qquad \checkmark \text{Solve everything} \\ \blacksquare \text{ Intractable above ~4 kHz}$	•	Room shape? Shoebox, Auditorium, Underground cave
•	Image source method [13] ✓ Fast (for low reflection orders)	•	Room acoustics? Abbey Road studio, Cathedral
•	 Specular reflections only Energy-based / Ray-based / Particle-based methods 	•	Source/receiver types? Omnidirectional, Cardiod, Human speaker, Hearing aids
	$ \begin{array}{c} $	•	 Random shoebox rooms with: length/width in [2m, 10m] height in [2m, 6m] Omnidirectional sources and receivers
•	Simulators efficiently combining the last two: RoomSim [14], Pyroomacoustics [15]		placed uniformly at random in the room with 1m « safe distance »
		•	10k – 100k RIRs

RIR Simulation Trade-offs

What about the surface acoustic properties?

RIR Simulation Trade-offs

What about the surface acoustic properties?

- Diffusion coefficients:
 - Same random value for all surfaces
 - In [0, 0.3] < 500 Hz, in [0.2, 1] > 500 Hz

RIR Simulation Trade-offs

What about the surface acoustic properties?

- Diffusion coefficients:
 - Same random value for all surfaces
 - In [0, 0.3] < 500 Hz, in [0.2, 1] > 500 Hz

Meant to emulate typical surface diffusivity and room furnishing [X]

RIR Simulation Trade-offs

What about the surface acoustic properties?

- Diffusion coefficients:
 - Same random value for all surfaces
 - In [0, 0.3] < 500 Hz, in [0.2, 1] > 500 Hz

Meant to emulate typical surface diffusivity and room furnishing [X]

- Absorption coefficients:
 - Typically defined in octave bands $(b \in \{125, 250, 500, \dots, 4000\} \text{ Hz})$

RIR Simulation Trade-offs

What about the surface acoustic properties?

- Diffusion coefficients:
 - Same random value for all surfaces
 - In [0, 0.3] < 500 Hz, in [0.2, 1] > 500 Hz

Meant to emulate typical surface diffusivity and room furnishing [X]

- Absorption coefficients:
 - Typically defined in octave bands $(b \in \{125, 250, 500, \dots, 4000\} \text{ Hz})$

A « **reflectivity-biased** » acoustic sampling

strategy [16]

```
For each surface type (wall, ceiling, floor) toss
a coin:
    •On heads: frequency-independent absorption
    coefficient in [0, 0.12] for all (hard surfaces)
    •On tails: random absorption profile inside
    realistic ranges (treated surface)
```


RIR Simulation Trade-offs

What about the surface acoustic properties?

- Diffusion coefficients:
 - Same random value for all surfaces
 - In [0, 0.3] < 500 Hz, in [0.2, 1] > 500 Hz

Meant to emulate typical surface diffusivity and room furnishing [X]

- Absorption coefficients:
 - Typically defined in octave bands $(b \in \{125, 250, 500, \dots, 4000\} \text{ Hz})$

A « reflectivity-biased » acoustic sampling

strategy [16]

For each surface type (wall, ceiling, floor) toss a coin:

On heads: frequency-independent absorption coefficient in [0, 0.12] for all (hard surfaces)
On tails: random absorption profile inside realistic ranges (treated surface)

Diffusion coefficients: Meant to emulate typical surface Same random value for all surfaces diffusivity and room furnishing [X] In [0, 0.3] < 500 Hz, in [0.2, 1] > 500 Hz Absorption coefficients: Typically defined in octave bands ($b \in \{125, 250, 500, \dots, 4000\}$ Hz) 6000 A « reflectivity-biased » acoustic sampling Unif. RB strategy [16] 5000 For each surface type (wall, ceiling, floor) toss 4000 a coin: • On heads: frequency-independent absorption 3000 coefficient in [0, 0.12] for all (hard surfaces) 2000 • On tails: random absorption profile inside realistic ranges (treated surface) 1000 0 0.5 1.5 2 1 0

RT60 (s)

2.5

OUTLINE

1) Intro & Background

2) Virtually-Supervised Learning

- 3) Examples and Results
- 4) Conclusions and Outlook

OUTLINE

1) Intro & Background
 2) Virtually-Supervised Learning
 3) Examples and Results
 4) Conclusions and Outlook

Antoine.Deleforge@inria.fr

QMUL Winter School 09.12.21

Example 1: RIR -> Mean absorption profile of surfaces [16]

$$\bar{\alpha}(b) \stackrel{\text{def}}{=} \frac{1}{S_{\text{tot}}} \sum_{\text{surface } i} \alpha_i(b) S_i \qquad (b \in \{125, 250, 500, \dots, 4000\} \text{ Hz})$$

$$\bar{\alpha}(b) \stackrel{\text{def}}{=} \frac{1}{S_{\text{tot}}} \sum_{\text{surface } i} \alpha_i(b) S_i \qquad \left(\begin{array}{c} b \in \{125, 250, 500, \dots, 4000\} \text{ Hz} \end{array} \right)$$
Absorption
coefficient in [0,1]

$$\bar{\alpha}(b) \stackrel{\text{def}}{=} \frac{1}{S_{\text{tot}}} \sum_{\text{surface } i} \alpha_i(b) S_i \qquad \left(\begin{array}{c} b \in \{125, 250, 500, \dots, 4000\} \text{ Hz} \end{array} \right)$$
Area in m²

$$\bar{\alpha}(b) \stackrel{\text{def}}{=} \frac{1}{S_{\text{tot}}} \sum_{\text{surface } i} \alpha_i(b) S_i \qquad \left(b \in \{125, 250, 500, \dots, 4000\} \text{ Hz} \right)$$
$$\sum_i S_i$$

Ínría_

2) CNN

2) CNN

- Simulated test results: RoomSim, real absorption profiles, 5 room geometries, 500 RIRs
- Comparing two training sets (Unif., RB) and the two neural networks (MLP, CNN) against Sabine and Eyring's laws (given true S_{tot} and V)

- Simulated test results: RoomSim, real absorption profiles, 5 room geometries, 500 RIRs
- Comparing two training sets (Unif., RB) and the two neural networks (MLP, CNN) against Sabine and Eyring's laws (given true S_{tot} and V)

- Simulated test results: RoomSim, real absorption profiles, 5 room geometries, 500 RIRs
- Comparing two training sets (Unif., RB) and the two neural networks (MLP, CNN) against Sabine and Eyring's laws (given true S_{tot} and V)
 - Training on uniformly sampled acoustics fails to outperform reverberation theory

- Simulated test results: RoomSim, real absorption profiles, 5 room geometries, 500 RIRs
- Comparing two training sets (Unif., RB) and the two neural networks (MLP, CNN) against Sabine and Eyring's laws (given true S_{tot} and V)
 - Training on uniformly sampled acoustics fails to outperform reverberation theory
 - Training on the reflectivity-biased set significantly outperforms both baselines

Example 1: RIR -> Mean absorption profile of surfaces [16]

• Encouraging generalizability to real data (900 RIRs, 10 room configurations [12])

Example 1: RIR -> Mean absorption profile of surfaces [16]

• Encouraging generalizability to real data (900 RIRs, 10 room configurations [12])

 \mathcal{A} : RIR featuring « *nice* » reverberation decay

 \mathcal{B} : RIR with « *unusual* » reveberation decay

Example 1: RIR -> Mean absorption profile of surfaces [16]

• Encouraging generalizability to real data (900 RIRs, 10 room configurations [12])

 \mathcal{A} : RIR featuring « *nice* » reverberation decay

 \mathcal{B} : RIR with « *unusual* » reveberation decay

Example 1: RIR -> Mean absorption profile of surfaces [16]

Encouraging generalizability to real data (900 RIRs, 10 room configurations [12])

 \mathcal{A} : RIR featuring « *nice* » reverberation decay

 \mathcal{B} : RIR with « *unusual* » reveberation decay

 $ar{lpha}(1000 {
m Hz})$, RIRs in ${\cal A}$ vs ${\cal B}$

Example 2: Blind echo estimation [4]

A « pic-nic » dataset

- One Source
- Two microphones
- Nearest surface is most reflective
- Random shoe-box rooms

Example 2: Blind echo estimation [4]

A « pic-nic » dataset

- One Source
- Two microphones
- Nearest surface is most reflective
- Random shoe-box rooms

Room impulse responses look like this:

Example 2: Blind echo estimation [4]

A « pic-nic » dataset

- One Source
- Two microphones
- Nearest surface is most reflective
- Random shoe-box rooms

Room impulse responses look like this:

Example 2: Blind echo estimation [4]

A « pic-nic » dataset

- One Source
- Two microphones
- Nearest surface is most reflective
- Random shoe-box rooms

Room impulse responses look like this:

QMUL Winter School 09.12.21 24/30

Example 2: Blind echo estimation [4]

A « pic-nic » dataset

- One Source
- Two microphones
- Nearest surface is most reflective
- Random shoe-box rooms

Room impulse responses look like this:

Example 2: Blind echo estimation [4]

A « pic-nic » dataset

- One Source
- Two microphones
- Nearest surface is most reflective
- Random shoe-box rooms

Room impulse responses look like this:

Example 2: Blind echo estimation [4]

Simulated 2channel white

Example 2: Blind echo estimation [4]

Simulated 2channel white

Example 2: Blind echo estimation [4]

Simulated 2channel white

 \checkmark

Example 2: Blind echo estimation [4]

Simulated 2channel white

0.32

1.38

GCC-PHAT

GCC-PHAT

sp

sp+n

×

Example 3: Blind room parameter estimation [17]

• Joint estimation of volume, total surface, $RT_{60}(b)$ and $\bar{\alpha}(b)$ from multiple, multichannel noisy speech recordings

Example 3: Blind room parameter estimation [17]

- Joint estimation of volume, total surface, $RT_{60}(b)$ and $\bar{\alpha}(b)$ from multiple, multichannel noisy speech recordings

Example 3: Blind room parameter estimation [17]

- Joint estimation of volume, total surface, $RT_{60}(b)$ and $\bar{\alpha}(b)$ from multiple, multichannel noisy speech recordings

• A maximum-likelihood cost-function: $\mathcal{L}_{\theta}(x, y) = -\log p_{\theta}(y|x) = -\log \mathcal{N}(y; \mu_{\theta}(x), \sigma_{\theta}^2(x))$

$$=rac{1}{2}\sum_{d=1}^D\log\sigma_{d, heta}^2(oldsymbol{x})+rac{(y_d-\mu_{d, heta}(oldsymbol{x}))^2}{\sigma_{d, heta}^2(oldsymbol{x})}$$

Example 3: Blind room parameter estimation [17]

- Joint estimation of volume, total surface, $RT_{60}(b)$ and $\bar{\alpha}(b)$ from multiple, multichannel noisy speech recordings

• A maximum-likelihood cost-function: $\mathcal{L}_{\theta}(x, y) = -\log p_{\theta}(y|x) = -\log \mathcal{N}(y; \mu_{\theta}(x), \sigma_{\theta}^2(x))$

$$\stackrel{c}{=} \frac{1}{2} \sum_{d=1}^{D} \log \sigma_{d,\theta}^2(\boldsymbol{x}) + \frac{(y_d - \mu_{d,\theta}(\boldsymbol{x}))^2}{\sigma_{d,\theta}^2(\boldsymbol{x})}$$

• Allows aggreting multiple source-receiver recordings via Bayes' theorem:

$$p_{\theta}(y_d | \bar{\boldsymbol{x}} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_J]) = \mathcal{N}(y_d; \bar{\mu}_{d,\theta}(\bar{\boldsymbol{x}}), 1/\bar{\gamma}_{d,\theta}^2(\bar{\boldsymbol{x}})) \quad \bar{\mu}_{d,\theta}(\bar{\boldsymbol{x}}) = \sum_{j=1}^J \frac{\gamma_{d,\theta}^2(\boldsymbol{x}_j)}{\bar{\gamma}_{d,\theta}^2(\bar{\boldsymbol{x}})} \mu_{d,\theta}(\boldsymbol{x}_j), \ \bar{\gamma}_{d,\theta}^2(\bar{\boldsymbol{x}}) = \sum_{j=1}^J \gamma_{d,\theta}^2(\boldsymbol{x}_j) - \sum_{j=1}^J \gamma_{d,\theta}^2(\bar{\boldsymbol{x}}) - \sum_{j=1}^J \gamma_{d,\theta}^2(\bar{\boldsymbol{x$$

Example 3: Blind room parameter estimation [17]

Mean results on 3 real rooms [12] (30 rec. per room)

Innía
OUTLINE

1) Intro & Background
2) Virtually-Supervised Learning
3) Examples and Results
4) Conclusions and Outlook

Antoine.Deleforge@inria.fr

QMUL Winter School 09.12.21

OUTLINE

1) Intro & Background
2) Virtually-Supervised Learning
3) Examples and Results
4) Conclusions and Outlook

Antoine.Deleforge@inria.fr

QMUL Winter School 09.12.21

• Recovering the geometry and acoustic profiles of a room from a clap recording is far from solved! In particular at low-freq (<1000 Hz)

- Recovering the geometry and acoustic profiles of a room from a clap recording is far from solved! In particular at low-freq (<1000 Hz)
- Next challenge: estimation of individual surfaces/objects in the room?

- Recovering the geometry and acoustic profiles of a room from a clap recording is far from solved! In particular at low-freq (<1000 Hz)
- Next challenge: estimation of individual surfaces/objects in the room?
- A variety of open and useful inverse problems in acoustics

- Recovering the geometry and acoustic profiles of a room from a clap recording is far from solved! In particular at low-freq (<1000 Hz)
- Next challenge: estimation of individual surfaces/objects in the room?
- A variety of open and useful inverse problems in acoustics
- How to develop « hybrid » models that are jointly driven by data, signal processing and physics?

- Recovering the geometry and acoustic profiles of a room from a clap recording is far from solved! In particular at low-freq (<1000 Hz)
- Next challenge: estimation of individual surfaces/objects in the room?
- A variety of open and useful inverse problems in acoustics
- How to develop « hybrid » models that are jointly driven by data, signal processing and physics?
- Promising directions: domain adaptation, transfer learning, generative models, adversarial networks, neural RIR generation, ...

- Recovering the geometry and acoustic profiles of a room from a clap recording is far from solved! In particular at low-freq (<1000 Hz)
- Next challenge: estimation of individual surfaces/objects in the room?
- A variety of open and useful inverse problems in acoustics
- How to develop « hybrid » models that are jointly driven by data, signal processing and physics?
- Promising directions: domain adaptation, transfer learning, generative models, adversarial networks, neural RIR generation, ...
- Coming soon: extension of Pyroomacoustics that loads measured source and receiver directivity profiles

- Recovering the geometry and acoustic profiles of a room from a clap recording is far from solved! In particular at low-freq (<1000 Hz)
- Next challenge: estimation of individual surfaces/objects in the room?
- A variety of open and useful inverse problems in acoustics
- How to develop « hybrid » models that are jointly driven by data, signal processing and physics?
- Promising directions: domain adaptation, transfer learning, generative models, adversarial networks, neural RIR generation, ...
- Coming soon: extension of Pyroomacoustics that loads measured source and receiver directivity profiles

[1] A Deleforge, F Forbes, R Horaud (2015), "Acoustic space learning for sound-source separation and localization on binaural manifolds", International journal of neural systems 25(01):1440003

[2] A Deleforge, R Horaud, YY Schechner, L Girin (2015), "Co-localization of audio sources in images using binaural features and locally-linear regression", IEEE/ACM Transactions on Audio, Speech, and Language Processing 23(4):718-731

[3] A Deleforge, R Horaud (2012), "2D sound-source localization on the binaural manifold", IEEE International Workshop on Machine Learning for Signal Processing, 1-6

[4] D Di Carlo, A Deleforge, N Bertin (2019), "Mirage: 2d source localization using microphone pair augmentation with echoes", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

[5] S Kataria, C Gaultier, A Deleforge (2017), "Hearing in a shoe-box: binaural source position and wall absorption estimation using virtually supervised learning", IEEE International Conference on Acoustics, Speech and Signal and Signal Processing (ICASSP)

[6] A F Genovese, H Gamper, V Pulkki, N Raghuvanshi, I J Tashev (2019), "Blind room volume estimation from singlechannel noisy speech.", IEEE International Conference on Acoustics, Speech and Signal and Signal Processing (ICASSP)

[7] R Scheibler, D Di Carlos, A Deleforge, I Dokmanic (2018), "Separake: Source separation with a little help from echoes", IEEE International Conference on Acoustics, Speech and Signal and Signal Processing (ICASSP)

[8] I Dokmanić, R Scheibler, M Vetterli (2015), "Raking the cocktail party", IEEE journal of selected topics in signal processing 9.5:825-836.

[9] C Gaultier, S Kataria, A Deleforge (2017), "VAST: The virtual acoustic space traveler dataset", International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA)

Bibliography

[10] HP Tukuljac, A Deleforge, R Gribonval (2018), "Mulan: A blind and off-grid method for multichannel echo retrieval", Neural Information Processing Conference (NeurIPS)

[11] D Di Carlo, C Elvira, A Deleforge, N Bertin, R Gribonval (2020), "Blaster: An off-grid method for blind and regularized acoustic echoes retrieval", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

[12] D Di Carlo, P Tandeitnik, C Foy, A Deleforge, N Bertin, S Gannot, "dEchorate: a Calibrated Room Impulse Response Database for Echo-aware Signal Processing (2021)", EURASIP Journal on Audio, Speech, and Music Processing

[13] B Allen, D A Berkley (1979), "Image method for efficiently simulating small-room acoustics.", The Journal of the Acoustical Society of America 65.4:943-950.

[14] Schimmel, Steven M., Martin F. Muller, and Norbert Dillier (2009), "A fast and accurate shoebox room acoustics simulator", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

[15] R Scheibler, E Bezzam, and I Dokmanić (2018), "Pyroomacoustics: A python package for audio room simulation and array processing algorithms", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

[16] C Foy, A Deleforge, D Di Carlo, "Mean absorption estimation from room impulse responses using virtually supervised learning", The Journal of the Acoustical Society of America 150 (2), 1286-1299

[17] P Srivastava, A Deleforge, E Vincent (2021), "Blind Room Parameter Estimation Using Multiple-Multichannel Speech Recordings", IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)

[18] I Dokmanić, R Parhizkar, A Walther, Y M Lu, M Vetterli (2013), "Acoustic echoes reveal room shape", Proceedings of the National Academy of Sciences 110(30):12186-12191.

