2021 Intelligent Sensing Winter School

An Affordance Detection Pipeline for Resource-Constrained Devices

<u>Tommaso Apicella^{1,2}</u>, Andrea Cavallaro², Riccardo Berta¹, Paolo Gastaldo¹, Francesco Bellotti¹ and Edoardo Ragusa¹

> ¹ DITEN, University of Genoa ² CIS, Queen Mary University of London

Affordance detection

Segmenting parts of objects based on potential interaction with a human.

Affordance detection

Segmenting parts of objects based on potential interaction with a human.

Affordance detection

Segmenting parts of objects based on potential interaction with a human.

Wearable context (prosthetic):

- Resource-constrained devices
- Robotic solutions require remarkable computational power
- Human-in-the-loop application

Baseline

Models for portable embedded systems [1] assume objects to be:

- In foreground
- Completely visible

[1] Ragusa, E. et al., "Hardware-Aware Affordance Detection for Application in Portable Embedded Systems", IEEE Access, 2021.

Baseline

Models for portable embedded systems [1] assume objects to be:

- In foreground
- Completely visible

Framing issue: the position of the camera is indirectly controlled by a human

[1] Ragusa, E. et al., "Hardware-Aware Affordance Detection for Application in Portable Embedded Systems", IEEE Access, 2021.

Contributions

Overcome framing issues

Contributions

- Overcome framing issues
 Object detector
 Affordance detector
- Leverage human-in-the-loop feature: the object class is known by the human

Contributions

• Leverage human-in-the-loop feature: the object class is known by the human

• Target resource-constrained devices employing lightweight models

Proposed Method

Considered models

Comparison: wearable vs robotic

[1] Ragusa, E. et al., "Hardware-Aware Affordance Detection for Application in Portable Embedded Systems", IEEE Access, 2021.

[2] Nguyen, A. et al., "Object-Based Affordances Detection With Convolutional Neural Networks and Dense Conditional Random Fields", IEEE /RSJ IROS, 2017.

[3] Howard, A. et al., "Searching for MobileNetV3", IEEE/CVF ICCV, 2019.

CIS centre for intelligent sensing

Datasets

UMD [4]

- Simple setting
- Same resolution
- Blue rotating support
- Single object per image

IIT-AFF [2]

- Challenging setting
- Different resolutions
- Different supports and scenes
- Multiple objects per image

[2] Nguyen, A. et al., "Object-Based Affordances Detection With Convolutional Neural Networks and Dense Conditional Random Fields", IEEE/RSJ IROS, 2017.

[4] Myers, A. et al., "Affordance Detection of Tool Parts from Geometric Features", IEEE ICRA, 2015.

Datasets

UMD [4]

IIT-AFF [2]

[2] Nguyen, A. et al., "Object-Based Affordances Detection With Convolutional Neural Networks and Dense Conditional Random Fields", IEEE/RSJ IROS, 2017.

[4] Myers, A. et al., "Affordance Detection of Tool Parts from Geometric Features", IEEE ICRA, 2015.

Metrics

Mean Average Precision (mAP):

• Area under Precision-Recall curve

 F^w_β score [5]:

$$F_{\beta}^{w} = (1+\beta^{2}) \frac{Precision^{w} \cdot Recall^{w}}{\beta^{2} \cdot Precision^{w} + Recall^{w}}$$

w:

- weights the dependency between ground truth pixels
- weights the errors based on distance with respect to ground truth

[5] Margolin, R. et al., *"How to evaluate foreground maps,"* IEEE Conference on Computer Vision and Pattern Recognition, 2014.

Object detection results

Affordance detection results

Improvement employing proposed method (Obj. det. + Aff. det.) vs baseline (only Aff. det.)

Qualitative results

Image	Baseline	Proposed method		
	Aff. Det.	Obj. det.	Aff. det.	
CIS centre for intelligent sensing	Unive di Ge	ersità nova		Queen Mary

Conclusions

- Pipeline to overcome framing issue
- Object detection improvement leveraging human-in-the-loop
- Affordance detection improvement
- Target resource-constrained devices employing lightweight models

tommaso.apicella@edu.unige.it

t.apicella@qmul.ac.uk

centre for

intelligent sensing

