Speaker Localization and Tracking using Multi-modal Signals

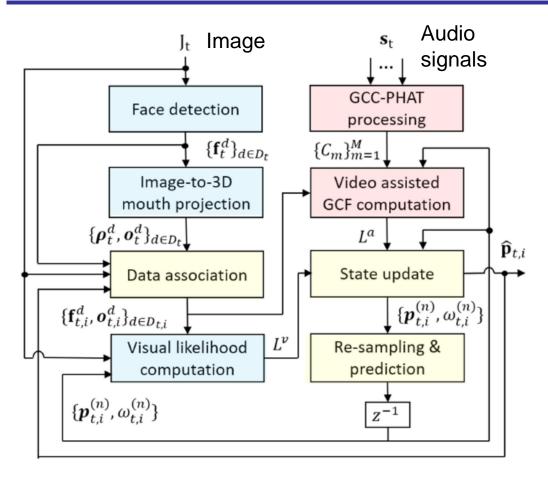
Xinyuan Qian 04/09/2019

Centre for Intelligent Sensing Queen Mary University of London

- Objective
 - Multiple Objects Tracking (MOT) in 3D using a <u>small-size co-</u>
 <u>located</u> audio-visual sensing platform
- Motivations
 - Real-world applications e.g. surveillance, driver assistance
 - Complementary advantages of multi-modalities
 - Deal with the rapid changing environment
 - An improved tracking performance

Emotech Olly

- Traditional problems e.g. reverberation, background noise, occlusion and body orientation
- Depth estimate in neither audio nor video *i.e. co-located setup*
- Multi-modality fusion e.g. what, when and how to fuse


State-of-the-Art (SoA) summary

- Increasing popularity for audio-visual MOT in 3D
- SoA Tracking approaches
 - Kalman filter, particle filter framework etc.
 - Time-delay, steered response power etc.
 - Colour, detection, motion etc.
- Limitations
 - MOT in 3D with distributed sensor networks
 - MOT on image with small-size sensing platform
 - Lack of public datasets

CIS centre for intelligent sensing

Proposed method

General block diagram

 f_t^d : d^{th} face detection, $d \in D_t$

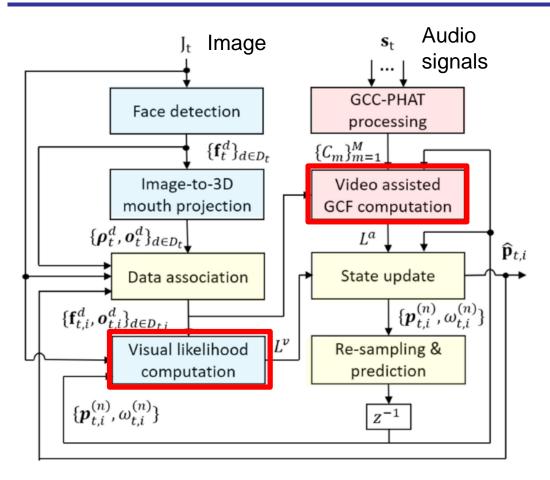
 o_t^d : 3D mouth location estimate

 C_m : GCC-PHAT at m^{th} mic pair

P_t: particle set

L^a: audio likelihood

 L^{ν} : video likelihood


g: Global Coherence Field (GCF)

 $\widehat{p}_{t,i}$: 3D estimate of target *i*

Proposed method

General block diagram

 f_t^d : d^{th} face detection, $d \in D_t$

- o_t^d : 3D mouth location estimate
- C_m : GCC-PHAT at m^{th} mic pair
- **P**_t: particle set
- L^a: audio likelihood
- L^{v} : video likelihood
- g: Global Coherence Field (GCF)
- $\widehat{\boldsymbol{p}}_{t,i}$: 3D estimate of target *i*

Novelties

Video likelihood

• Discriminative or Generative likelihood

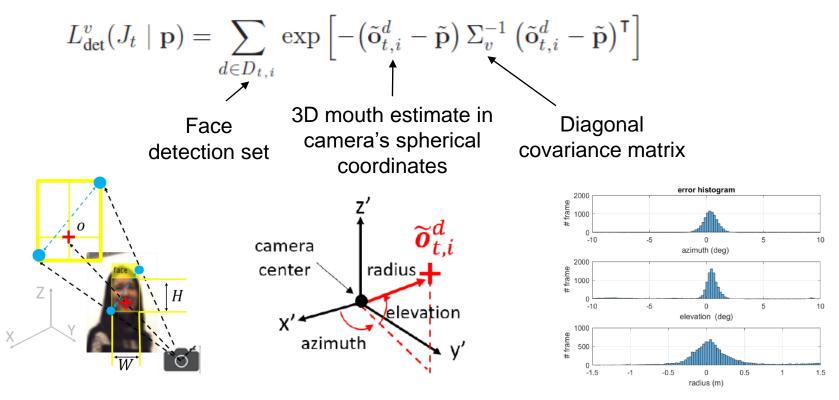


Image-3D projection

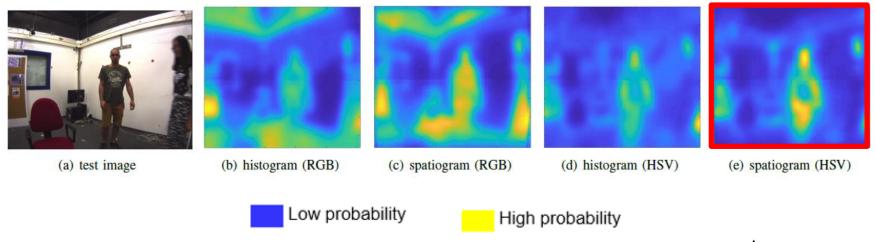
intelligent sensing

entre for

Camera's spherical coordinates

Error in individual coordinates

Video likelihood

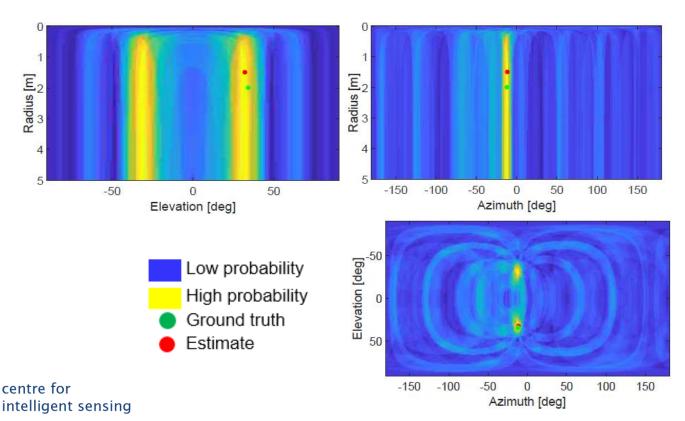

centre for

intelligent sensing

• Discriminative or Generative likelihood

$$L_{\text{HSV}}^{v}(J_{t} \mid \mathbf{p}) = \sum_{b=1}^{B} \sqrt{r_{\mathbf{v}}^{b} r_{\mathbf{f}}^{b}} \left[8\pi |\Sigma_{\mathbf{v}}^{b} \Sigma_{\mathbf{f}}^{b}|^{\frac{1}{4}} \mathcal{N}(\mu_{\mathbf{v}}^{b} \mid \mu_{\mathbf{f}}^{b}, 2(\Sigma_{\mathbf{v}}^{b} + \Sigma_{\mathbf{f}}^{b})) \right]$$

Similarity measure between face reference image f and particle's 3D-image projection v



Audio likelihood

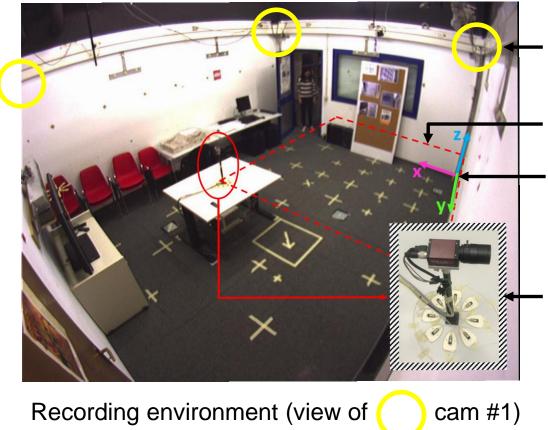
Video-assisted acoustic map

$$g_v(\mathbf{p},t) = \frac{1}{M} \sum_{m=1}^M C_m\left(\tau_m(\mathbf{p}|o_{t',i}^{d,z}), t\right)$$

Speaker height suggested from video 3D estimate

Experiments

- AV16.3 dataset (public)
 - 8-element circular microphone array (20 cm diameter)
 - Standard RGB camera
 - Ground truth
 - sensor calibration information
 - target 3D location
- CAV3D dataset (self-collected)
 - All above
 - Co-located audio-visual sensing platform

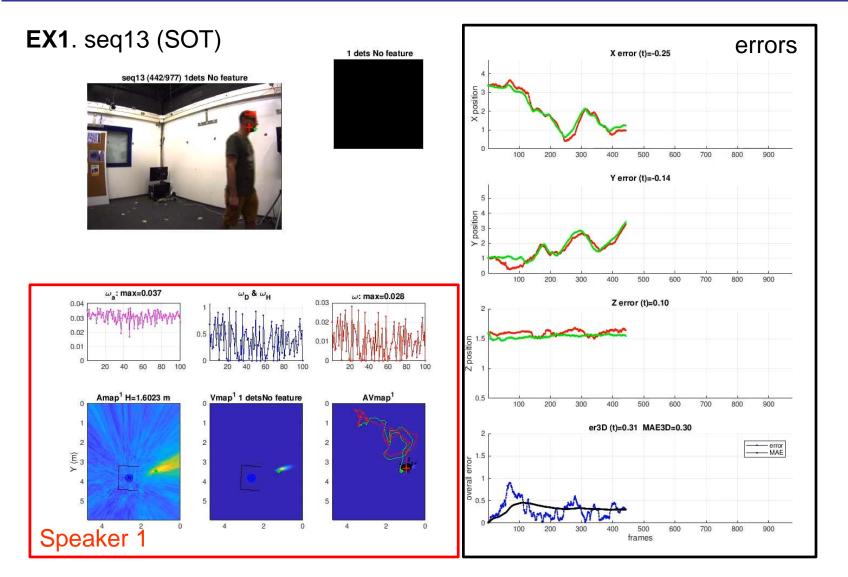

A novel audio-visual dataset for MOT in 3D!

- Calibrated sensors
- Synchronized audio-visual signals
- Ground Truth (GT)
 - Image location, 3D location, voice activities
- Three sub-sets (20), durations from 15s to 80s:
 - CAV3D-SOT (9), 1 speaker
 - CAV3D-SOT2 (6), 2 targets take turns to talk
 - CAV3D-MOT (5), 3 concurrent speakers

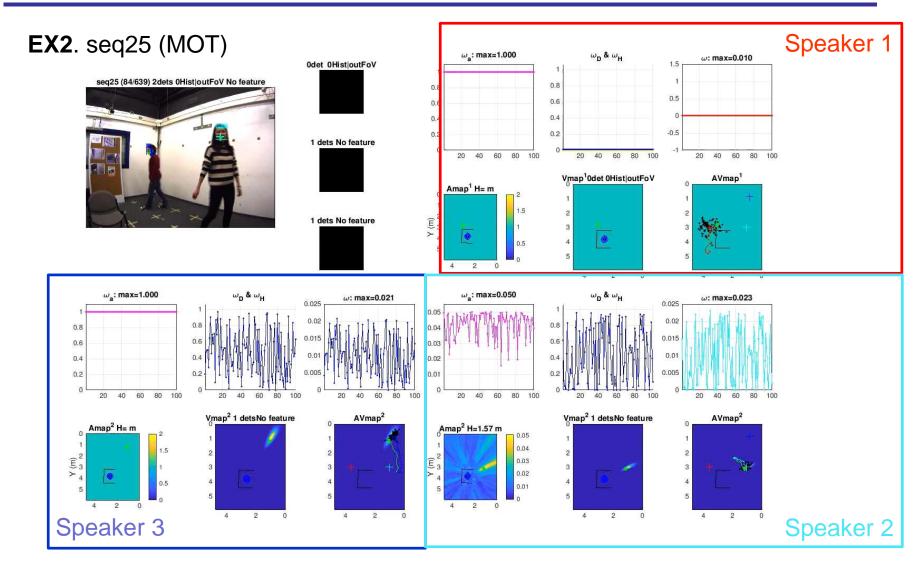
https://ict.fbk.eu/units/speechtek/cav3d/

CAV3D dataset

A novel audio-visual dataset for MOT in 3D!


- Corner cameras
- Camera's Field of View
- Origin of the 3D world coordinates
- Audio-visual sensing platform

https://ict.fbk.eu/units/speechtek/cav3d/


Tracking result – demo1

►IJ intelligent sensing

Tracking result – demo2

CIS centre for intelligent sensing

Results

	1	Image plane					3-D					
		Kilic2015	Qian2018	AO (2-D)	VO	AV3T	Zotkin2002	Qian2018	AO (2-D)	VO	AV3T	
SOT	TLR	$29.5 {\pm} 12.4$	25.0 ± 1.2	52.2 ± 4.7	38.4 ± 17.5	7.0 ± 3.6	84.8 ± 5.4	68.7 ± 2.9	56.5 ± 4.4	47.3 ± 13.5	$\textbf{31.8} \pm \textbf{3.5}$	
	ε	60.0 ± 34.1	38.2 ± 2.3	60.3 ± 6.9	80.2 ± 103.0	16.5 ± 8.6	.84 ±	$.50 \pm .02$	$.52 \pm .08$	$.76 \pm .34$	$.30\pm.05$	
	ε'	24.5 ± 30.5	$15.5 \pm .4$	27.7 ± 1.2	12.7 ± 1.1	$12.2\pm.3$	$.17 \pm .02$	$.20\pm.01$	$.17 \pm .01$	$.16\pm.01$	$.16\pm.01$	
SOT2	TLR	33.0 ± 18.5	$23.0 \pm .9$	38.3 ± 3.9	13.4 ± 7.6	$\textbf{4.0} \pm \textbf{1.6}$	85.2 ± 4.5	62.9 ± 2.8	43.6 ± 4.9	20.1 ± 7.1	11.1 ± 3.1	
	ε	81.7 ± 73.5	53.4 ± 2.6	48.0 ± 6.0	36.5 ± 27.2	$\textbf{20.8} \pm \textbf{5.4}$	$.75 \pm .07$	$.47 \pm .02$	$.37 \pm .07$	$.31 \pm .12$	$.18\pm.02$	
	ε'	23.7 ± 64.5	$13.3 \pm .3$	$25.0 \pm .6$	$12.0 \pm .2$	$11.7 \pm .2$	$.17 \pm .02$	$.20 \pm .01$	$.15 \pm .01$	$.14 \pm .01$	$.14\pm.00$	
MOT	TLR	$16.0 {\pm} 10.0$	-	59.4 ± 11.5	37.1 ± 7.1	11.2 ± 5.9	77.7 ± 8.1	-	70.2 ± 9.0	56.6 ± 6.2	35.7 ± 6.6	
	ε	59.3 ± 33.9	-	155.7 ± 60.6	127.9 ± 60.1	24.8 ± 23.7	$.92 \pm .23$	-	$1.03 \pm .27$	$1.05 \pm .22$	$.43 \pm .12$	
	ε'	17.6 ± 27.4	-	19.9 ± 2.1	12.2 ± 1.3	$10.1\pm.6$	$.16 \pm .02$	-	$.16 \pm .02$	$.14\pm.02$	$.15 \pm .01$	

Tracking results comparison on CAV3D dataset

		Image plane						3-D					
		Kilic2015	Qian2018	AO (2-D)	VO	AV3T	Zotkin2002	Qian2018	AO (2-D)	VO	AV3T		
SOT	TLR	-	48.2 ± 3.8	48.1 ± 6.0	9.0 ± 1.9	$\textbf{8.5} \pm \textbf{2.6}$	10.4 ± 3.4	29.2 ± 3.7	34.9 ± 8.9	52.7 ± 5.5	13.3 ± 4.3		
	ε	$11.8 \pm .2$	19.9 ± 1.6	24.1 ± 5.7	8.2 ± 1.1	7.7 ± 1.3	$.15\pm.01$	$.25 \pm .02$	$.28 \pm .07$	$.41 \pm .05$	$.16 \pm .02$		
	ε'	-	$8.5 \pm .3$	$7.6 \pm .5$	$5.3 \pm .1$	$5.3 \pm .1$	$.12 \pm .01$	$.14 \pm .01$	$.15 \pm .01$	$.16 \pm .01$	$.11\pm.01$		
MOT	TLR	-	-	56.6 ± 9.4	15.5 ± 9.0	$\textbf{9.2} \pm \textbf{6.0}$	37.7 ± 5.6	-	44.9 ± 1.2	56.3 ± 9.8	$\textbf{15.8} \pm \textbf{8.9}$		
	ε	$11.2 \pm .1$	-	38.4 ± 9.2	17.9 ± 8.8	10.1 ± 3.7	$.31 \pm .03$	-	$.48 \pm .12$	$.52 \pm .11$	$.21\pm.07$		
	ε'	-	-	$7.7\pm.9$	$5.1 \pm .4$	$4.9 \pm .3$	$.14 \pm .01$	-	$.15\pm.02$	$.15 \pm .02$	$.11\pm.01$		

Tracking results comparison on AV16.3 dataset

http://cis.eecs.qmul.ac.uk/AV3T.html

[Qian2018] X. Qian et al., "3-D mouth tracking from a compact microphone array co-located with a camera," in Proc. Int. Conf. Acoust., Speech, Signal Process., Calgary, AB, Canada, Apr. 2018, pp. 3071–3075.

[Kilic2015] V. Kılıc, M. Barnard, W. Wang, and J. Kittler, "Audio assisted robust visual tracking with adaptive particle filtering," IEEE Trans. Multimedia, vol. 17, no. 2, pp. 186–200, Feb. 2015.

[Zotkin2002] D.N. Zotkin, R.Duraiswami, and L. S.Davis, "Joint audio–visual tracking using particle filters," EURASIP J. Advances Signal Process., vol. 2002, no. 1, pp. 1154–1164, Dec. 2002.

[AV16.3] G. Lathoud, J.-M. Odobez, and D. Gatica-Perez, "AV16.3: An audiovisual corpus for speaker localization and tracking," in Machine Learning for Multimodal Interaction. Martigny, Switzerland: Springer, Jun. 2004.

Thanks for your listening! Any questions?

Xinyuan Qian

Centre for Intelligent Sensing Queen Mary University of London

