Vision and Touch: Multimodal or Cross-modal?

Shan Luo Department of Computer Science University of Liverpool shan.luo@liverpool.ac.uk

Centre for Autonomous Systems Technology

计算机表现一站式服务 www.zhitongguigu.com

- 1. Synesthesia: Touching to See and Seeing to Feel
- 2. Senses of Robots: Sensors
- 3. Object representations using tactile images
- 4. Integrated visual-tactile perception
- 5. Interactive Perception

Biological synesthesia

Human vs Robot perception

Vision Tactile sensing Proprioception Auditory sensing Representation Action Interaction Communication

...

Human vision

Human touch

Human multimodal sensation

Human multimodal sensation

Senses of Robot: Sensors

Eyes – Cameras

for XBCX 360.

Webcams

RGB-D Object Dataset

 \bigcirc

• ZED

Touch – Tactile sensors

Туре	Advantages	Disadvantages	Examples
Capacitive	Taxels can be very small; High spatial resolution; Sensitive to small forces; High frequency response.	Hysteresis; Sensitive to electro- magnetic noise and temperature change; Non-linear response; Cross- talk; Complex electronics.	PPS DigiTacts
Piezoelectric	Good workability; Flexibility; Chemical stability; Fast dynamic response.	Sensitive to temperature; Fragility of electrical junctions; Dynamic measurements only.	PVDF
Optical	Magnetic resonance compatible; Flexible and fast; No interconnections	Bulky sizes; High power consuming.	Optical fibres
Piezo-resistive	Economic; Sensitive and robust; Easy to manufacture.	High power consuming; Low repeatability; Fragile to shear forces.	Weiss tactile sensors
Tunnel effect	High spatial resolution; High dynamic range.	Bulky sizes; Non-linear response.	QTC touch sensors
Ultrasonic-based	Fast dynamic response; Good force resolution.	Bulky sizes; limited utility at low frequency; sensitive to temperature.	
Magnetism-based	Sensitive and robust; No measurement hysteresis.	Limited to nonmagnetic mediums.	MagOne
Barometer-based	Good elasticity; Low cost.	Low spatial resolution.	TakkTile; BioTac
Camera-based	Extra high spatial resolution.	Bulky sizes.	GelSight
Graphene	Flexible, extra thin	Still too high price	Dahiya '17

11

Tactile sensors - Single-contact (haptic) sensors

Surface

Kroemer, *et al.* "Learning dynamic tactile sensing with robust vision-based training." *T-RO*, 2011. Lepora. "Biomimetic Active Touch with Tactile Fingertips and Whiskers." *IEEE Trans. Haptics*, 2016.

Tactile sensors - High spatial resolution sensors

Weiss Robotics

Multimodal BioTac

Pressure Profile Systems (PPS)

Tekscan

GelSight

Density of Merkel receptors in the fingertip: around 14×14

Human finger

Pezzementi, et al. "Tactile-object recognition from appearance information." T-RO, 2011.

Tactile sensors - High spatial resolution sensors

GelSight sensor

Tactile sensors - Large-area tactile sensors

Kaltenbrunner, *et al.* "An ultra-lightweight design for imperceptible plastic electronics." Nature, 2013. Schmitz, *et al.* "Methods and technologies for the implementation of large-scale robot tactile sensors." T-RO, 2011. P. Mittendorfer, and G. Cheng,. Humanoid multimodal tactile-sensing modules. T-RO, 2011.

Touch – Tactile sensors

Modality	FoV	Info.	Compl.	Compu.	Invariance
Visual	Global	Rich	Low	High	Scaling, rotation, trans- lation, illumination
Tactile	Local	Sparse	High	Low	Rotation, translation, "illumination"

Object representations using tactile images

Object representations in the robot world

Local shape Global shape Locations Texture Pose

...

Global shape recognition

Contact points based recognition

Tactile point clouds

Occupancy grid mapping

Pro: Arbitrary contact shapes can be retrieved.

Con: Time consuming when investigating a large object surface.

M. Meier, *et al.*, "A Probabilistic Approach to Tactile Shape Reconstruction" *IEEE Trans. Robot.*, 2011. Z. Pezzementi, *et al.*, "Object mapping, recognition, and localization from tactile geometry," *ICRA*, 2011.

Global shape recognition

Tactile patterns based recognition

Pro: Local features can be revealed.

Con: Three-dimensional distribution information is not incorporated.

Z. Pezzementi, *et al.*, "Tactile-Object Recognition From Appearance Information," *IEEE Trans. Robot.*, 2011. **S. Luo**, *et al.*, "Novel Tactile-SIFT Descriptor for Object Shape Recognition", *IEEE Sensors J.*, 2015.

Global shape recognition

Shape representation in 4D space

Shan Luo, *et al.*, "iCLAP: Shape Recognition by Combining Proprioception and Touch Sensing.", *Autonomous Robots*, 2018 Shan Luo, *et al.*, "Iterative Closest Labeled Point for Tactile Object Shape Recognition." IROS, 2016.

Integrated visual-tactile perception

Feature sharing between vision and tactile sensing

UNIVERSITY OF LEEDS

Shan Luo, et al., "ViTac: Feature Sharing between Vision and Tactile Sensing for Cloth Texture Recognition", ICRA, 2018.

Feature sharing between vision and tactile sensing

Shan Luo, et al., "ViTac: Feature Sharing between Vision and Tactile Sensing for Cloth Texture Recognition", ICRA, 2018.

"Touch to See" and "Seeing to Feel"

J. Lee, D. Bollegala, S. Luo, "Touching to See" and "Seeing to Feel": Robotic Cross-modal Sensory Data Generation for Visual-Tactile Perception, ICRA 2019.

"Touch to See" and "Seeing to Feel"

Visual-to-Tactile Network

J. Lee, D. Bollegala, **S. Luo**, "Touching to See" and "Seeing to Feel": Robotic Cross-modal Sensory Data Generation for Visual-Tactile Perception, ICRA 2019 (under review).

"Touch to See" and "Seeing to Feel"

(a) Ideal training images generating a consistent pattern

(b) Cloth set containing a dyed design showing difficulty in replicating a tactile-visual image

J. Lee, D. Bollegala, **S. Luo**, "Touching to See" and "Seeing to Feel": Robotic Cross-modal Sensory Data Generation for Visual-Tactile Perception, ICRA 2019 (under review).

Interactive tactile perception

Press Slip Twist Explore Push Grasping Manipulation

. . .

PR2: www.willowgarage.com/pages/pr2

Classic SLAM: vision as input

Haptic SLAM

whisker (dynamic tactile sensor)

C. Fox, et al. "Tactile SLAM with a biomimetic whiskered robot", ICRA, 2012.

Experimental setup

Bayesian filtering framework

Bayesian filtering framework

Motion model/Control update

Feature-based measurement models/Measurement update

Measurement update

Leveraging Action in Perception and Perception in Action

Picture credit:

Benjamin Schneiders, smARTLab

PR2: www.willowgarage.com/pages/pr2

Leveraging Action in Perception and Perception in Action

https://www.roboticgizmos.com https://www.digitalspy.com

Summary

- Goal: Robots perceive the physical world
- ✓ Make use of high-resolution camera-based tactile sensors for perception tasks
- ✓ Tactile object representations of object local and global shapes, textures and poses
- ✓ Multimodal and Cross-modal visual-tactile perception
- □ Future: Intelligent perception through interaction

Acknowledgement EPSRC Innovate UK

Engineering and Physical Sciences Research Council

Prof Ted Adelson MIT CSAIL

Dr Hongbin Liu King's College London

Prof Raul Fuentes University of Leeds

RAIN

Prof Karl Tuyls Google DeepMind, Paris

Prof Kaspar Althoefer Prof Michael Fisher Prof Andy Cooper Queen Mary University University of Liverpool University of Liverpool of London

Prof Tony Cohn University of Leeds

S. CYMRU BUCCESS impact

cdbb

Centre for Digital Built Britain

42

Thank you

Centre for Autonomous Systems Technology

