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Motivation




Machine Learning (specifically deep learning) + Big data + High computational power are state-of-the-
art in many applications. BUt,

ALHAS A HALLUCINATION
PROBLEM THAT'S PROVING
TOUGH TO FIX

https://www.wired.com/story/ai-has-a-hallucination-problem-thats-
proving-tough-to-fix/
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REPORT

MAGIC Al: THESE ARE THE
OPTICAL ILLUSIONS THAT
TRICK, FOOL, AND
FLUMMOX COMPUTERS

The black-box nature of algorithms,
susceptibility to adversarial attacks, lack of
mathematical and empirical understanding
has raised concerns.

#  Technology Intelligence

Facebook shuts down robots after they
invent their own language
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Alresearchers allege that machine learning is alchemy | """
https://www.sciencemag.org/news/2018/05/a
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Is a machine learning model Trustworthy? Robust? Fair? w?

How can we address the above concerns?

F. Doshi-Velez and B. Kim. Towards a Rigorous Science of Interpretable Machine Learning. arXiv e- prints, arXiv:1702.08608, 2017.




Is a machine learning model Trustworthy? Robust? Fair? w?

How can we address the above concerns?

By bringing Interpretability to machine learning models
Or
Explainable Al
Or
Interpretable Machine Learning

F. Doshi-Velez and B. Kim. Towards a Rigorous Science of Interpretable Machine Learning. arXiv e- prints, arXiv:1702.08608, 2017.




Is a machine learning model Trustworthy? Robust? Fair? w?

How can we address the above concerns?

By bringing Interpretability to machine learning models
Or
Explainable Al
Or
Interpretable Machine Learning

S, & =il
V-4 WA sneeze | Y Explainer
:...- '“-.:_:,.r 'HI / ;, weigh[ {LlME} .
- headache
= =4 no fatigue
- age 7
Model Data and Prediction Explanation Human makes decision

Ribeiro et al., “Why Should | Trust you? : Explaining the Predictions of Any Classifier”, in Proc. KDD, 2016.
S. Mishra, B. L. Sturm, and S. Dixon. Local Interpretable Model-Agnostic Explanations for Music Content Analysis. In Proc. ISMIR, 2017.




Methods to understand model behaviour
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Train Inherently Interpretable Models
» Decision trees

» Sparse linear models

» Rule-based models
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@ Limitations

* Uninterpretable Features
* Poor performance on high-dimensional data.
* Difficult to optimize.
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Train Inherently Interpretable Models
» Decision trees

» Sparse linear models
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Post-hoc Analysis of Pre-trained models
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http://cs231n.stanford.edu/slides/2016/winter1516_lecture9.pdf

Nguyen et al., “Synthesizing the preferred inputs for neurons in neural networks via deep network
generators ”, in Proc. NIPS, 2016.

Local analysis for the ‘Cat’ Class

Global analysis




[ Transparent Machine Learning ]
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Feature Inversion

Feature inversion ( or inverting a feature vector) involves mapping (in some way) a feature vector
from a layer, back to the input space (e.g., image, time-frequency spectrogram).

Discriminately
> Trained DNN > > | Feature Inversion >
(e.g., ImageNet)

Input image Inverted Representation
FC6 feature vector
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How can we use this idea of feature inversion to understand a model?




Key Idea

Discriminative training forces each hidden layer of a deep discriminative model to only
preserve information relevant to the discrimination task.




Key Idea

Discriminative training forces each hidden layer of a deep discriminative model to only
preserve information relevant to the discrimination task.
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Inversion of features (e.g., features maps) generated at a layer (e.g., convolutional
layer) back to the input space (e.q., pixel space) will assist in understanding information
a model preserves at that layer.




Deep Vocal Detector

/ Features \
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Mel spectrogram

J. Schlu'ter et. al, “Exploring data augmentation for improved singing voice detection with neural networks”, in Proc. ISMIR, 2015.
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Feature Inversion

Inverted Representations |

S. Mishra, B.L. Sturm, S. Dixon, “Understanding a Deep Machine Listening Model Through Feature Inversion”, in Proc. ISMIR 2018.
J. Schlu'ter et. al, “Exploring data augmentation for improved singing voice detection with neural networks”, in Proc. ISMIR, 2015.




Results

Layers
Jamendo ) >
Input Convl Conv2 MPa Cunv4 Convs
_ !E 3
Instrumental |~ o= |- 2= Ei 'I!"-
=

Vocal

U FC8 does not preserve any temporal and harmonic information, but the reconstructions from shallower
layers are visually similar to the input.

U Inverted representations from FC8 suggest that the SVD model learns a class-decision function in this layer.

U Deeper layers capture more invariances from data than shallow layers.

U The above results generalize across datasets.




Take Away Points

» Relying just on performance metrics for model selection may lead to selection of suboptimal models.

» Combining performance metrics with interpretable explanations may provide more insight into
model behaviour, leading to the development and selection of trustworthy models.

» There exist several ways to analyse the behaviour of machine learning models
* Using inherently Interpretable models

* Using post-hoc methods to analyse a pre-trained model.
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