Language and Vision: tasks, models and what they learn?

Ravi Shekhar

Queen Mary University of London

2019 Intelligent Sensing Summer School

Visual Grounding of Natural Language

Q: Is the door close?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

Visual Grounding of Natural Language

Q: Is the door close? A: Yes (Visual)

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Caption: Mary is going to the office. Q: Where is Mary going?

<ロト < 個 ト < 臣 ト < 臣 ト 臣 の Q (P 3

Caption: Mary is going to the office. Q: Where is Mary going?

A: Office (Linguistic)

Visual Grounding of Natural Language

Q: Is the door close?
A: Yes (Visual)
Caption: Mary is going to the office.
Q: Where is Mary going?
A: Office (Linguistic)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Caption: Mary is going to the office. Q: Is Mary's office close?

Visual Grounding of Natural Language

Q: Is the door close?
A: Yes (Visual)
Caption: Mary is going to the office.
Q: Where is Mary going?
A: Office (Linguistic)

イロト (同) (三) (三) (つ) (つ)

Caption: Mary is going to the office. Q: Is Mary's office close? A: Yes (Multi-modal) • Language and Vision (LaVi) Tasks

- LaVi Models
- What they learn?

• Language and Vision (LaVi) Tasks

- LaVi Models
- What they learn?

Language and Vision Tasks

Non-interactive tasks

Interactive tasks

- Non-interactive tasks
 - Image Captioning (IC)
 - Visual Question Answering (VQA)
 - Visual reference resolution (ReferIt)

(ロト 4 回 ト 4 三 ト 4 三 ト 三 の Q () 8

- Non-interactive tasks
 - Image Captioning (IC)
 - Visual Question Answering (VQA)
 - Visual reference resolution (ReferIt)
- Interactive tasks
 - Goal oriented dialogue: GuessWhat (GW)
 - Free form dialogue: Visually Dialogue(VisDial)

(ロト 4 回 ト 4 三 ト 4 三 ト 三 の Q () 8

• IC

Two red mugs and a towel on a kitchen counter.

(日)

• IC

Two red mugs and a towel on a kitchen counter.

VQA

Q: How many cups are there?

<ロト < 四ト < 三ト < 三ト = 三日 -

• IC

Two red mugs and a towel on a kitchen counter.

VQA

Q: How many cups are there?

<ロト < 四ト < 三ト < 三ト = 三日 -

A: Two

• IC

Two red mugs and a towel on a kitchen counter.

• VQA *Q: How many cups are there? A:* Two

• ReferIt The top mug.

LaVi Interactive tasks

Goal oriented dialogue: GuessWhat(GW) Game

LaVi Interactive tasks

Caption: A girl and a dog in a car.

Questioner

Q1: Is dog sitting? Q2: What girl is doing? Q3: Is she old enough to drive?

A1: No, dog is half outside the car. A2: She is sitting on the driver's seat. A3: Yes.

Answerer

Free form dialogue: Visually Dialogue(VisDial)

• Language and Vision (LaVi) Tasks

<ロト < 回 > < 臣 > < 臣 > < 臣 > ○ へ つ 12

- LaVi Models
- What they learn?

The Hub-and-Spoke Model

Computational framework and neuroanatomical sketch

Lambon Ralph et al. The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 2017.

A Generic Language and Vision Model.

<ロト < 目 > < 目 > < 目 > < 目 > 2 の へ C 14

Models: Fusion

Point-wise Multiplication Antol et al ICCV'15

Multimodal Compact Bilinear Pooling Fukui et al., EMNLP 16

Models: Attention

Stacked Attention Networks Yang et al., CVPR 16

Hierarchical Question-Image Co-Attention Lu et al., NIPS 16

Bottom-Up and Top-Down Attention Anderson et al., CVPR 18

Visual Question Answering on VQA v2

<ロト<

日ト

<

目ト

</br />

• Language and Vision (LaVi) Tasks

<ロト<日

ト<目

ト<目

ト

く

三

ト

く

三

ト

く

三

り

へ

19

- LaVi Models
- What they learn?

Do models trained on these tasks learn to properly represent multimodal information?

<ロト<日本

・< 日本

Originally: VQA, ReferIt and GW have different datasets & architectures

<ロト < 個ト < 臣ト < 臣ト 三 のへで 21

- ReferIt originally an object detection task
- VQA and GW defined as classification tasks

Originally: VQA, ReferIt and GW have different datasets & architectures

- ReferIt originally an object detection task
- VQA and GW defined as classification tasks

Our setup: for a fair comparison across tasks

- Create a common dataset
 - Get all the common images in all the datasets (14458) and create splits with respect to images (MS-COCO)

<ロト < 個ト < 臣ト < 臣ト 三 のへで 21

• Make the linguistic items as similar as possible

Originally: VQA, ReferIt and GW have different datasets & architectures

- ReferIt originally an object detection task
- VQA and GW defined as classification tasks

Our setup: for a fair comparison across tasks

- Create a common dataset
 - Get all the common images in all the datasets (14458) and create splits with respect to images (MS-COCO)
 - Make the linguistic items as similar as possible
- Pose the three tasks as retrieval tasks.

Formulation as Retrieval Tasks

• VQA:

Retrieving the correct textual answer from a set of 18 possible natural language answers

• {Yes, No, Two mugs, Green, On the floor ... }

• ReferIt and GW:

Retrieving the target object from a set of 20 possible objects in an image

Pre-trained vectors:

- Visual features from ResNet152
- Language features from USE (Universal Sentence Encoder)

Multi-Layer Perceptron generating:

- Language embedding (VQA)
- Visual embedding (ReferIt, GW)

Trained with cosine similarity loss

Do models trained on these tasks learn to properly represent multimodal information?

(ロ) (四) (三) (三) (三) (24)

- Using a diagnostic task
- Inspecting multimodal semantic spaces

FOIL as a Diagnostic Task

FOIL Diagnostic Task

Classify a caption as original or foiled

Bikers approaching a bird. original

Bikers approaching a dog. foiled

(Shekhar et al. ACL-2017)

- Spot semantic (in)congruence between an image and a caption.
- Requires compositional alignment between modalities.

General Architecture - The Hub

Pre-trained vectors:

- Visual features from ResNet152
- Language features from USE (Universal Sentence Encoder)

Multi-Layer Perceptron generating:

- Language embedding (VQA)
- Visual embedding (ReferIt, GW)

Trained with cosine similarity loss

Pre-trained vectors:

- Visual features from ResNet152
- Language features from USE (Universal Sentence Encoder)

Task-specific MLPs are replaced by a fully connected layer. Trained with cross-entropy loss. Predicting original or foiled

Setups for the FOIL Diagnostic Task

Encoder weights:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

28

• Trained on VQA/ReferIt/GW, then frozen

Setups for the FOIL Diagnostic Task

Encoder weights:

- Trained on VQA/ReferIt/GW, then frozen
- Lower bound: frozen random initialisation
- Upper bound: trained on the FOIL task

Chance accuracy: 50%

	overall	original	foiled
Lower bound	53.79	65.33	42.25
VQA	53.78	66.09	41.48
ReferIt	54.02	60.39	47.66
GuessWhat	54.18	59.02	49.34
Upper bound	67.59	87.66	47.52

- Low results overall, challenging task
- Better performance in original captions
- GW relatively better at foiled captions

Analysis via FOIL Task: Learning over Time

- VQA is comparatively less stable over epochs
- GuessWhat and ReferIt show more stable increases in accuracy

Analysis via FOIL: Size of FOIL Training Data

- GuessWhat starts relatively better with little FOIL data: the task yields more transferable skills.
- Both GuessWhat and ReferIt increase their accuracy relatively smoothly as more FOIL data is provided.
- VQA requires more FOIL data to perform above chance and experiences a sudden accuracy increase.

Do models trained on these tasks learn to properly represent multimodal information?

<ロト < 部 ト < 臣 ト < 臣 ト 三 の < で 32

- Using a diagnostic task
- Inspecting multimodal semantic spaces

Do models trained on these tasks learn to properly represent multimodal information?

<ロト < 個ト < 臣ト < 臣ト 三 のへで 32

- Using a diagnostic task
- Inspecting multimodal semantic spaces
 - Nearest Neighbour Overlap (NN)

Analysis via Nearest Neighbour Overlap

Is one of the modalities is given more weightage compare to other?

Analysis via Nearest Neighbour Overlap

Is one of the modalities is given more weightage compare to other?

- For each of the 80 MS-COCO object categories: average visual vector and linguistic vector of the category word.
- Check overlap of nearest neighbours in multimodal space vs. linguistic and visual space, respectively.

<ロト < 個ト < 臣ト < 臣ト 三 のへで 33

• v_{cat} (v_{dog} , v_{tiger} , v_{lion})(v_{mouse} , v_{tiger} , v_{lion})

Analysis via Nearest Neighbour Overlap

Is one of the modalities is given more weightage compare to other?

- For each of the 80 MS-COCO object categories: average visual vector and linguistic vector of the category word.
- Check overlap of nearest neighbours in multimodal space vs. linguistic and visual space, respectively.
- v_{cat} (v_{dog} , v_{tiger} , v_{lion})(v_{mouse} , v_{tiger} , v_{lion})

k =10	Vision	Language
VQA	0.703	0.365
ReferIt	0.780	0.386
GW	0.689	0.359
FOIL	0.246	0.291

FOIL multimodal space more abstract and balanced across modalities. Multimodal spaces learned by other tasks are closer to the visual space.

- Introduces common Language and Vision Tasks and Models
- Common vision & language tasks do not lead to learning fine-grained multimodal understanding skills.
- Representations learned via VQA are less stable and transferable.
- Representations learned via GW dialogue seem to have more desirable properties

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < の 34

- slightly higher accuracy on FOIL diagnostic task
- with less FOIL data required
- less bias/weightage towards the visual modality

Thank you!!! Q&A

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 35

- University of Trento: Raffaella Bernardi, Alberto Testoni, Sandro Pezzelle, Yauhen Klimovich, Aurelie Herbelot, Moin Nabi, Enver Sangineto
- University of Amsterdam: Raquel Fernández, Aashish Venkatesh, Tim Baumgärtner, Elia Bruni

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

36

• IT University of Copenhagen: Barbara Plank