AI gets creative:

Use of machine learning in video enhancement

Marta Mrak, Lead Engineer, BBC R&D

2019 Intelligent Sensing Summer School, 2 Sept. 2019
Application scenario: content management platform

1. Content Creation, Archives

2. Auto AI Checks and Enhancements

3. Production Team Smart Select

4. Distribution
Video coding
Video coding: an application of AI

H.264/AVC
> 15 years old
Video streaming enabler

H.265/HEVC
> 5 years old
UHD / HDR streaming enabler

VVC (/H.266?)
Under development
Killer app?

Video coding
Machine learning
Deep learning
Video compression standards – building blocks

Video coding algorithms

- Signal processing
- Perception science
- Statistics
- Machine learning

+ brute force
Applications of machine learning in video coding: reducing costs (or not)

- **Brute force**
 - Check various split options, and pick the one that compresses given block the best

- **Required**
 - Reduce complexity of video encoder by reducing the number of split options that are checked

- **Hypothesis**
 - Reduction can be done using knowledge from the context

\[y = \frac{4^{x+1} - 1}{3} \]
Applications of machine learning in video coding: Support Vector Machines

- Knowledge from the context filtered using SVM
- Reduced number of split options that are checked
- Reduced core encoder time
- But…SVMs are costly
- Reduced overall cost
Applications of machine learning in video coding: Decision Trees

• Decision trees – “glass box” approach
 - Determine optimised split decision structure

 Jieon Kim et al., “Fast Inter-prediction Based on Decision Trees for AV1 Encoding,” in Proc. IEEE ICASSP 2019

• Applied in HEVC and AV1 encoders
 - On average approx. 40% processing time saving, for less than 1% BD-rate loss
Growing of Decision Trees

Histograms of Coding Unit Features

[Video not available in this version of the slides]
Deep learning
Deep learning

- Artificial neural networks
 - Algorithms inspired by the human brain
 - Learn from large amounts of data
 - Groups of neurons – layers (deep)
 - Learning by adapting the neurons and connections between neurons based on training data

- Why now
 - Increase in data
 - Computing power
Visual data

- 50% of our neural tissue is related to vision
- Algorithms developed for visual data are very complex
 - But can help us with other data challenges
- Useful tool: 2D convolutions

2D Convolution Example

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>0</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>
An example of AI’s perception of media using convolutions

[Video not available in this version of the slides]
Examples of deep learning application in traditional video compression

Estimation of quality and bit-rate

- Intra prediction
- Colour prediction
- Inter prediction

• Maria Santamaria et al., “Estimation of Rate Control Parameters for Video Coding Using CNN,” in Proc. IEEE VCIP 2018
Video coding and ML: conclusions

• For AI to be effective, algorithms have to be carefully designed

• Benefits:
 • Improved efficiency
 • Improved accuracy
 • Better decisions
 • Better predictions
 • Cost reduction
 • Quality improvement

[Video not available in this version of the slides]
AI gets creative
Video enhancement: super-resolution

[Video not available in this version of the slides; see https://www.bbc.co.uk/rd/projects/cognitus]
Semantic enrichment

[Video not available in this version of the slides; see https://www.bbc.co.uk/rd/projects/cognitus]
Video enhancement: colourisation

[Video not available in this version of the slides; see https://www.bbc.co.uk/rd/blog/2019-09-artificial-intelligence-colourisation-video]

AI

Video coding

AI gets creative

Machine learning

Deep learning
Thank you for your attention!