

Al gets creative:

Use of machine learning in video enhancement

Marta Mrak, Lead Engineer, BBC R&D

2019 Intelligent Sensing Summer School, 2 Sept. 2019

Application scenario: content management platform

3. Production Team Smart Select

2. Auto AI Checks and Enhancements

4. Distribution

Video coding

Video coding: an application of Al

Video compression standards – building blocks

Video coding algorithms

- Signal processing
- Perception science
- Statistics
- Machine learning

+ brute force

Applications of machine learning in video coding: reducing costs (or not)

Brute force

- Check various split options, and pick the one that compresses given block the best

Required

 Reduce complexity of video encoder by reducing the number of split options that are checked

Hypothesis

 Reduction can be done using knowledge from the context

Applications of machine learning in video coding: Support Vector Machines

- Knowledge from the context filtered using SVM
- Reduced number of split options that are checked
- Reduced core encoder time
 - ime
- But...SVMs are costly
- Reduced overall cost

Applications of machine learning in video coding: Decision Trees

- Decision trees "glass box" approach
 - Determine optimised split decision structure

- Natasha Westland et al., "Decision Trees for Complexity Reduction in Video Compression," to appear in Proc. IEEE ICIP 2019
- Jieon Kim et al., "Fast Inter-prediction Based on Decision Trees for AVI Encoding," in Proc. IEEE ICASSP 2019

- Applied in HEVC and AVI encoders
 - On average approx. 40%
 processing time saving, for less than 1% BD-rate loss

Growing of Decision Trees

[Video not available in this version of the slides]

Deep learning

Deep learning

- Artificial neural networks
 - Algorithms inspired by the human brain
 - Learn from large amounts of data
 - Groups of neurons layers (deep)
 - Learning by adapting the neurons and connections between neurons based on training data
- Why now
 - Increase in data
 - Computing power

Visual data

- 50% of our neural tissue is related to vision
- Algorithms developed for visual data are very complex
 - But can help us with other data challenges
- Useful tool: 2D convolutions

30	3	2_2	1	0
0_2	0_2	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

An example of Al's perception of media using convolutions

[Video not available in this version of the slides]

Examples of deep learning application in traditional video compression

Maria Santamaria et al., "Estimation of Rate Control Parameters for Video Coding Using CNN," in Proc. **IEEE VCIP 2018**

Concat1

Conv1 (3, 3, 64)

MaxPool1 (2, 2) (- Conv2 (3, 3, 64)

Conv3 (3, 3, 64)

MaxPool2 (2, 2) ← Conv4 (3, 3, 64)

Conv5 (3, 3, 64)

UpSample1

Conv6 (3, 3, 64)

Conv7 (3, 3, 64)

Video coding and ML: conclusions

[Video not available in this version of the slides]

 For AI to be effective, algorithms have to be carefully designed

Benefits:

- Improved efficiency
- Improved accuracy
- Better decisions
- Better predictions
- Cost reduction
- Quality improvement

Al gets creative

Video enhancement: super-resolution

[Video not available in this version of the slides; see https://www.bbc.co.uk/rd/projects/cognitus]

Semantic enrichment

[Video not available in this version of the slides; see https://www.bbc.co.uk/rd/projects/cognitus]

Video enhancement: colourisation

[Video not available in this version of the slides; see https://www.bbc.co.uk/rd/blog/2019-09-artificial-intelligence-colourisation-video]

BBC | Research & Development

Thank you for your attention!

