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Literature Review
Ø Clustering Analysis: Caron et al., ECCV, 2018
Jointly optimising clustering analysis and representation learning

Ø Sample Specificity (Instance) Learning: Wu et al., CVPR, 2018
Considering every single sample as an independent class

2 Mathilde Caron et al .
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Fig. 1: Illustration of the proposed method: we iteratively cluster deep features
and use the cluster assignments as pseudo-labels to learn the parameters of the
convnet

Unsupervised learning has been widely studied in the Machine Learning com-
munity [19], and algorithms for clustering, dimensionality reduction or density
estimation are regularly used in computer vision applications [27, 54, 60]. For
example, the “bag of features” model uses clustering on handcrafted local de-
scriptors to produce good image-level features [11]. A key reason for their success
is that they can be applied on any specific domain or dataset, like satellite or
medical images, or on images captured with a new modality, like depth, where
annotations are not always available in quantity. Several works have shown that
it was possible to adapt unsupervised methods based on density estimation or di-
mensionality reduction to deep models [20, 29], leading to promising all-purpose
visual features [5, 15]. Despite the primeval success of clustering approaches in
image classification, very few works [3, 66, 68] have been proposed to adapt them
to the end-to-end training of convnets, and never at scale. An issue is that clus-
tering methods have been primarily designed for linear models on top of fixed
features, and they scarcely work if the features have to be learned simultaneously.
For example, learning a convnet with k-means would lead to a trivial solution
where the features are zeroed, and the clusters are collapsed into a single entity.

In this work, we propose a novel clustering approach for the large scale end-
to-end training of convnets. We show that it is possible to obtain useful general-
purpose visual features with a clustering framework. Our approach, summarized
in Figure 1, consists in alternating between clustering of the image descriptors
and updating the weights of the convnet by predicting the cluster assignments.
For simplicity, we focus our study on k-means, but other clustering approaches
can be used, like Power Iteration Clustering (PIC) [36]. The overall pipeline is
sufficiently close to the standard supervised training of a convnet to reuse many
common tricks [24]. Unlike self-supervised methods [13, 42, 45], clustering has the
advantage of requiring little domain knowledge and no specific signal from the
inputs [63, 71]. Despite its simplicity, our approach achieves significantly higher
performance than previously published unsupervised methods on both ImageNet
classification and transfer tasks.

Finally, we probe the robustness of our framework by modifying the exper-
imental protocol, in particular the training set and the convnet architecture.
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Figure 2: The pipeline of our unsupervised feature learning approach. We use a backbone CNN to encode each image as a feature

vector, which is projected to a 128-dimensional space and L2 normalized. The optimal feature embedding is learned via instance-level

discrimination, which tries to maximally scatter the features of training samples over the 128-dimensional unit sphere.

3. Approach

Our goal is to learn an embedding function v = fθ(x)
without supervision. fθ is a deep neural network with
parameters θ, mapping image x to feature v. This em-
bedding would induces a metric over the image space, as
dθ(x, y) = ∥fθ(x) − fθ(y)∥ for instances x and y. A
good embedding should map visually similar images closer
to each other.

Our novel unsupervised feature learning approach is
instance-level discrimination. We treat each image instance

as a distinct class of its own and train a classifier to distin-
guish between individual instance classes (Fig.2).

3.1. Non-Parametric Softmax Classifier

Parametric Classifier. We formulate the instance-level
classification objective using the softmax criterion. Sup-
pose we have n images x1, . . . , xn in n classes and their
features v1, . . . ,vn with vi = fθ(xi). Under the conven-
tional parametric softmax formulation, for image x with
feature v = fθ(x), the probability of it being recognized
as i-th example is

P (i|v) =
exp

(

wT
i v

)

∑n
j=1 exp

(

wT
j v

) . (1)

where wj is a weight vector for class j, and wT
j v measures

how well v matches the j-th class i.e., instance.
Non-Parametric Classifier. The problem with the para-
metric softmax formulation in Eq. (1) is that the weight vec-
tor w serves as a class prototype, preventing explicit com-
parisons between instances.

We propose a non-parametric variant of Eq. (1) that re-
places wT

j v with vT
j v, and we enforce ∥v∥ = 1 via a L2-

normalization layer. Then the probability P (i|v) becomes:

P (i|v) =
exp

(

vT
i v/τ

)

∑n
j=1 exp

(

vT
j v/τ

) , (2)

where τ is a temperature parameter that controls the con-
centration level of the distribution [11]. τ is important for
supervised feature learning [43], and also necessary for tun-
ing the concentration of v on our unit sphere.

The learning objective is then to maximize the joint prob-
ability

∏n
i=1 Pθ(i|fθ(xi)), or equivalently to minimize the

negative log-likelihood over the training set, as

J(θ) = −
n
∑

i=1

logP (i|fθ(xi)). (3)

Learning with A Memory Bank. To compute the proba-
bility P (i|v) in Eq. (2), {vj} for all the images are needed.
Instead of exhaustively computing these representations ev-
ery time, we maintain a feature memory bank V for stor-
ing them [46]. In the following, we introduce separate no-
tations for the memory bank and features forwarded from
the network. Let V = {vj} be the memory bank and
fi = fθ(xi) be the feature of xi. During each learning itera-
tion, the representation fi as well as the network parameters
θ are optimized via stochastic gradient descend. Then fi is
updated to V at the corresponding instance entry fi → vi.
We initialize all the representations in the memory bank V
as unit random vectors.

Discussions. The conceptual change from class weight vec-
tor wj to feature representation vj directly is significant.
The weight vectors {wj} in the original softmax formula-
tion are only valid for training classes. Consequently, they
are not generalized to new classes, or in our setting, new in-
stances. When we get rid of these weight vectors, our learn-
ing objective focuses entirely on the feature representation
and its induced metric, which can be applied everywhere in
the space and to any new instances at the test time.

Computationally, our non-parametric formulation elimi-
nates the need for computing and storing the gradients for
{wj}, making it more scalable for big data applications.
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Literature Review
Ø Self-supervised Learning: Zhang et al., CVPR, 2017 
Exploiting information intrinsically available in data

Ø Data Synthesis: Donahue et al., ICLR, 2016
Learning the true data distribution of training set

Published as a conference paper at ICLR 2017
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Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

generator maps latent samples to generated data, but the framework does not include an inverse
mapping from data to latent representation.

Hence, we propose a novel unsupervised feature learning framework, Bidirectional Generative
Adversarial Networks (BiGAN). The overall model is depicted in Figure 1. In short, in addition to
the generator G from the standard GAN framework (Goodfellow et al., 2014), BiGAN includes an
encoder E which maps data x to latent representations z. The BiGAN discriminator D discriminates
not only in data space (x versus G(z)), but jointly in data and latent space (tuples (x, E(x)) versus
(G(z), z)), where the latent component is either an encoder output E(x) or a generator input z.

It may not be obvious from this description that the BiGAN encoder E should learn to invert the
generator G. The two modules cannot directly “communicate” with one another: the encoder never
“sees” generator outputs (E(G(z)) is not computed), and vice versa. Yet, in Section 3, we will both
argue intuitively and formally prove that the encoder and generator must learn to invert one another
in order to fool the BiGAN discriminator.

Because the BiGAN encoder learns to predict features z given data x, and prior work on GANs has
demonstrated that these features capture semantic attributes of the data, we hypothesize that a trained
BiGAN encoder may serve as a useful feature representation for related semantic tasks, in the same
way that fully supervised visual models trained to predict semantic “labels” given images serve as
powerful feature representations for related visual tasks. In this context, a latent representation z may
be thought of as a “label” for x, but one which came for “free,” without the need for supervision.

An alternative approach to learning the inverse mapping from data to latent representation is to
directly model p(z|G(z)), predicting generator input z given generated data G(z). We’ll refer to
this alternative as a latent regressor, later arguing (Section 4.1) that the BiGAN encoder may be
preferable in a feature learning context, as well as comparing the approaches empirically.

BiGANs are a robust and highly generic approach to unsupervised feature learning, making no
assumptions about the structure or type of data to which they are applied, as our theoretical results will
demonstrate. Our empirical studies will show that despite their generality, BiGANs are competitive
with contemporary approaches to self-supervised and weakly supervised feature learning designed
specifically for a notoriously complex data distribution – natural images.

Dumoulin et al. (2016) independently proposed an identical model in their concurrent work, exploring
the case of a stochastic encoder E and the ability of such models to learn in a semi-supervised setting.

2 PRELIMINARIES

Let pX(x) be the distribution of our data for x 2 ⌦X (e.g. natural images). The goal of generative
modeling is capture this data distribution using a probabilistic model. Unfortunately, exact modeling
of this probability density function is computationally intractable (Hinton et al., 2006; Salakhutdinov
& Hinton, 2009) for all but the most trivial models. Generative Adversarial Networks (GANs) (Good-
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Abstract

We propose split-brain autoencoders, a straightforward
modification of the traditional autoencoder architecture, for
unsupervised representation learning. The method adds a
split to the network, resulting in two disjoint sub-networks.
Each sub-network is trained to perform a difficult task –
predicting one subset of the data channels from another.
Together, the sub-networks extract features from the en-
tire input signal. By forcing the network to solve cross-
channel prediction tasks, we induce a representation within
the network which transfers well to other, unseen tasks.
This method achieves state-of-the-art performance on sev-
eral large-scale transfer learning benchmarks.

1. Introduction

A goal of unsupervised learning is to model raw data
without the use of labels, in a manner which produces a
useful representation. By “useful” we mean a represen-
tation that should be easily adaptable for other tasks, un-
known during training time. Unsupervised deep methods
typically induce representations by training a network to
solve an auxiliary or “pretext” task, such as the image re-
construction objective in a traditional autoencoder model,
as shown on Figure 1(top). We instead force the network to
solve complementary prediction tasks by adding a split in
the architecture, shown in Figure 1 (bottom), dramatically
improving transfer performance.

Despite their popularity, autoencoders have actually not
been shown to produce strong representations for transfer
tasks in practice [44, 35]. Why is this? One reason might
be the mechanism for forcing model abstraction. To prevent
a trivial identity mapping from being learned, a bottleneck
is typically built into the autoencoder representation. How-
ever, an inherent tension is at play: the smaller the bottle-
neck, the greater the forced abstraction, but the smaller the
information content that can be expressed.

Instead of forcing abstraction through compression, via
a bottleneck in the network architecture, recent work has
explored withholding parts of the input during training
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Figure 1: Traditional vs Split-Brain Autoencoder ar-

chitectures. (top) Autoencoders learn feature representa-
tion F by learning to reconstruct input data X. (bottom)

The proposed split-brain autoencoder is composed of two
disjoint sub-networks F1,F2, each trained to predict one
data subset from another, changing the problem from re-
construction to prediction. The split-brain representation
F is formed by concatenating the two sub-networks, and
achieves strong transfer learning performance. The model is
publicly available on https://richzhang.github.
io/splitbrainauto.

[44, 35, 49]. For example, Vincent et al. [44] propose
denoising autoencoders, trained to remove iid noise added
to the input. Pathak et al. [35] propose context encoders,
which learn features by training to inpaint large, random
contiguous blocks of pixels. Rather than dropping data in
the spatial direction, several works have dropped data in
the channel direction, e.g. predicting color channels from
grayscale (the colorization task) [27, 49].

Context encoders, while an improvement over autoen-
coders, demonstrate lower performance than competitors
on large-scale semantic representation learning bench-
marks [49]. This may be due to several reasons. First, im-
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Motivation
(a) Clustering analysis:

Inconsistent inter-sample relations

error-propagation

(a) (b) (c)

(c) Measuring the consistency of inter-sample relations and learn
from those in high-confidence only

(b) Sample specificity learning:
Leaving out the correlation between samples

poor discriminative ability
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Anchor Neighbourhood Discovery
Ø Overview
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Neighbourhood Discovery & Selection
Ø Observation: Consistency v.s. Entropy
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Neighbourhood Supervision
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Experiments
Ø Small scale Image Classification (𝑘NN) Ø Small scale Image Classification (LC)
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Experiments
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