Learning object-centric trajectories of dexterous manipulation from demonstration

Gokhan Solak & Lorenzo Jamone g.solak@qmul.ac.uk l.jamone@qmul.ac.uk

Advanced Robotics @ Queen Mary ARQ

Problem

- Dexterous manipulation:
 - Coordination of multiple fingers
 - Point contacts with the object
 - Difficulty of sensing the grasped object
 - Maintaining the grasp
- Our solution:
 - Dynamical movement primitives
 - Virtual spring framework
 - Tactile sensing

Dynamical Movement Primitives

- Express motion with dynamical systems
- Converge to goal under perturbations
- Learn trajectories as weighted sum of basis functions
- Generalize the trajectories with task parameters
- We learn the task-space trajectory of the object

(Pastor et al, 2009)

Virtual Spring Framework

- Virtual springs connect fingertips to object frame
- Object pose approximation w.r.t. fingertips
- Impedance control with virtual springs
- Apply the force to keep the object in grasp

Force Feedback

- Contact slippage is a problem
- Including simple tactile info* improves stability
- Adapting spring stiffness

* Proportional control of the desired force

+ force feedback

Experimental results

- Teaching trajectories kinaesthetically
- Reproducing complex trajectories stably
- Possible to generalize to different conditions

Thank you

Gokhan Solak & Lorenzo Jamone g.solak@qmul.ac.uk l.jamone@qmul.ac.uk

