Jingya Wang, Xiatian Zhu, Shaogang Gong, Wei Li

Published in: Conference on Computer Vision and Pattern Recognition (CVPR) 2018

> Centre for Intelligent Sensing Queen Mary University of London

- Research Problem
- Methodology
- Experiments

Person re-identification (re-id)

Person re-identification (re-id) aims at matching people across non-overlapping camera views distributed at distinct locations.

CIS centre for intelligent sensing

How do human brain match person?

- > Supervised learning:
 - Metric learning
 - Deep learning

Limitation: need a large number of manually labelled matching pairs for each pair of camera views, poor scalability in practical re-id deployments, expensive to collect

Unsupervised Transfer Learning: (Our Focus)

lack the necessary knowledge on how visual appearance of identical objects changes cross-views due to different view angles, background and illumination -> weaker re-id performances

- Research Problem
- Methodology
- Experiments

Challenges:

- Source and target domains have unknown camera viewing conditions
- The identity/class between source and target domains are non-overlapping therefore presents a more challenging open-set recognition problem

-> Transferring knowledge of the source domain to target domain in attribute space

Challenges:

 The joint exploitation of attribute and identity labels gives rise to the heterogeneous problem

-> **smoothly transferring** the global identity information into the local attribute feature representation space

CIS centre for intelligent sensing

(a) Identity Branch $L_{id} = -\frac{1}{n_{bs}} \sum_{i=1}^{n_{bs}} \log \left(p_{id}(I_i^s, y_i^s) \right)$

(b) Attribute Branch 1 $L_{att} = -\frac{1}{n_{bs}} \sum_{i=1}^{n_{bs}} \sum_{j=1}^{m} \left(a_{ij} \log \left(p_{att}(I_i, j) \right) + (1 - a_{i,j}) \log \left(1 - p_{att}(I_i, j) \right) \right)$ $L_{att-total} = L_{att} + \lambda_2 \sum_{i=1}^{n_{bs}} L_{ID-transfer,i}$

CIS centre for intelligent sensing (c) Identity Inferred Attribute Space $L_{\text{rec}} = \|x_{\text{id}} - f_{\text{IIA}}(x_{\text{id}})\|^2$

$$\begin{split} L_{\text{ID-transfer}} &= \|\boldsymbol{e}_{\text{IIA}} - \tilde{\boldsymbol{p}}_{\text{att}}\|^2 \\ L_{\text{attr, IIA}} &= -\frac{1}{n_{\text{bs}}} \sum_{i=1}^{n_{\text{bs}}} \sum_{j=1}^m \left(a_{i,j} \log \left(p_{\text{IIA}}(\boldsymbol{I}_i, j) \right) + (1 - a_{i,j}) \log \left(1 - p_{\text{IIA}}(\boldsymbol{I}_i, j) \right) \right) \end{split}$$

$$L_{\mathrm{IIA}} = L_{\mathrm{attr, IIA}} + \lambda_1 L_{\mathrm{rec}} + \lambda_2 L_{\mathrm{ID-transfer}}$$

- Research Problem
- Methodology
- Experiments

1. Datasets:

 Market-1501:contains 32,668 images of 1,501 pedestrians, each of which was captured by at most six cameras at a university campus.

(27 classes of attributes)

- DukeMTMC-ReID: contains 2 ~ 426 images per person captured by 8 nonoverlapping camera views. (23 classes of attributes)
- **VIPeR** : contains 632 identities each with two images captured from two camera views with low resolution.
- **PRID**: consists of person images from two camera views: View A captures 385 people, whilst View B contains 749 people. Only 200 people appear in both views.

Dataset	VIPeR	PRID	Market-1501		DukeMCMT	
Metric (%)	R1	R1	R1	mAP	R1	mAP
SDALF[9]	19.9	16.3	-	-	-	-
DLLR [18]	29.6	21.1	-	-	-	-
CPS [6]	22.0	-	-	-	-	-
GL [17]	33.5	25.0	-	-	-	-
GTS [46]	25.2	-	-	-	-	-
SDC[55]	25.8	-	-	-	-	-
ISR [31]	27.0	17.0	40.3	14.3	-	-
Dic[19]	29.9	-	50.2	22.7	-	-
RKSL[48]	25.8	-	34.0	11.0	-	-
SAE[25]	20.7	-	42.4	16.2	-	-
AML[38]	23.1	-	44.7	18.4	-	-
UsNCA [38]	24.3	-	45.2	18.9	-	-
CAMEL [53]	30.9	-	54.5	26.3	-	-
PUL [8]	-	-	44.7	20.1	30.4	16.4
kLFDA_N [52]	15.9	9.1	-	-	-	-
SADA+kLFDA [52]	15.2	8.7	-	-	-	-
AdaRSVM [33]	10.9	4.9	-	-	-	-
UDML [36]	31.5	24.2	-	-	-	-
SSDAL [43]	37.9	20.1	39.4	19.6	-	-
TJ-AIDL ^{Duke}	35.1	34.8	58.2	26.5	N/A	N/A
TJ-AIDL ^{Market}	38.5	26.8	N/A	N/A	44.3	23.0

CIS centre for intelligent sensing

Conclusion

- Novel heterogeneous multi-task joint deep learning framework for unsupervised person re-id
- Progressive knowledge fusion for smoothly transferring the global identity information into the local attribute feature representation space
- Introduce an attribute consistency scheme for cross domain adaptation

Thank you

