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Introduction

• Definitions of group membership recognition

- Recognize which group each individual is part of

Group 1 Group 2

Group 3

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

Subject 9 Subject 10 Subject 11 Subject 12



Introduction

• Motivation

- People in a group share similar behaviors

and emotions [1]

- Body fea1qtures work better than the face features in

predicting group membership [2]

[1] S. G. Barsade, “The ripple effect: Emotional contagion and its influence on group behavior,” Administrative Science Quarterly, 2002.

[2] W. Mou, H. Gunes, and I. Patras, “Automatic recognition of emotions and membership in group videos,” in CVPRW, 2016.



The Proposed Framework

• Group membership recognition is modelled as a 

classification problem

X Y
f

X：Body behaviors

Y：Group membership

(Group 1 ? 2 ? 3 ?)

Linear-SVM

12 subjects from 3 groups watching 4 videos

Leave one subject out (blue) cross-validation 

f :



The Proposed Framework

• Generic model and independent model

Independent recognition modelGeneric recognition model Independent recognition model
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The Proposed Framework

• The proposed two-phase learning model



The Proposed Framework

• Generic model

λ : the regularization parameter

w0, b0 : the optimization parameters

𝐿 : the loss function and is given by the hinge-loss

𝑃𝑔𝑒𝑛𝑒𝑟𝑖𝑐: min
𝑤0, 𝑏0
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The Proposed Framework

• Specific model

𝑃𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐: min
w,𝑏

μ
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|𝑋𝑡|
 𝐿(𝑤, 𝑏; (𝑥𝑖 , 𝑧𝑖))

𝑋𝑡 ：a subset of the original training set

μ and ν：regularization parameters
ν
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2： is used to bias 𝑤 to be close to 𝑤0



The Proposed Framework

• Optimization: stochastic gradient descent (SGD) 

𝐽 𝑤, 𝑏 =
μ
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𝑥𝑖, 𝑧𝑖 ∈𝑋𝑡

𝐿(𝑤, 𝑏; (𝑥𝑖 , 𝑧𝑖))

Update 𝑤 and 𝑏 : 𝑤 𝑡+1 = 𝑤𝑡 −
𝛿𝑡
𝑘
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The first derivatives of 𝐽 with respect to 𝑤 and 𝑏:
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Objective function of 𝑃𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 :



The Proposed Framework

• Feature extraction

[1]

[1] H. Wang et al, “Dense trajectories and motion boundary descriptors for action recognition,” IJCV, 2013.



Experiments and Results

• Experiment setup

- Data: 3 groups of data, 12 participants 

- Feature: Body HOF feature

- Classifier: linear-SVM

• Experimental results

Different Models Average Accuracy (p-value)

Specific recognition model 52% (p<0.01)

Generic recognition model 35% (p=0.41)

Independent recognition model 33% (p=0.42)

Chance level 33%



Conclusions and Future Work

• Conclusions

- The proposed two-phase learning model outperforms 

the other models

- Group membership recognition results also indicates 

that individuals influence each others behaviours within a 

group and their nonverbal behaviours share commonalities



Conclusions and Future Work

• Future work

– Testing with a larger database

– Applying the two-phase learning model to other 

applications, such as affect recognition



Thank you!


