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Introduction

« Definitions of group membership recognition
- Recognize which group each individual is part of
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Introduction

 Motivation

- People in a group share similar behaviors
and emotions [1]

- Body fealqgtures work better than the face features in
predicting group membership [2]

[1] S. G. Barsade, “The ripple effect: Emotional contagion and its influence on group behavior,” Administrative Science Quarterly, 2002.
[2] W. Mou, H. Gunes, and |. Patras, “Automatic recognition of emotions and membership in group videos,” in CVPRW, 2016.
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The Proposed Framework

« Group membership recognition is modelled as a
classification problem

mEmmmm represents the subject that is used to leave out for cross-validation

I represents all the other subjects that are used to train the model f
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The Proposed Framework

« Generic model and independent model

B represents the subject that is used to leave out for cross-validation

B represents all the other subjects that are used to train the model
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The Proposed Framework

« Generic model and independent model
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The Proposed Framework

« The proposed two-phase learning model

I represents the subject that is used to leave out for cross-validation P P
I represents all the other subjects that are used to train the model Group3 : Specifi c
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The Proposed Framework

« Generic model
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o0 i=1
A . the regularization parameter
Wo, bo: the optimization parameters
L : the loss function and is given by the hinge-loss
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The Proposed Framework

« Specific model

o v
Prpeciict i I +5 1w = woll? + )" Lw, bi (xy2)

X; : asubset of the original training set
uand v : regularization parameters

§||w — wpl||? : is used to bias w to be close to w,

centre for
C I S intelligent sensing \E_‘,___ Queen I\/Iary

University of London



The Proposed Framework

« Optimization: stochastic gradient descent (SGD)

Objective function of Pg,qcific -

v , V , 1
Jw,b) = SIWI + S llw—woll+ > L(w,b; (xp z)

(xi, Z;) EX¢
oy 4] o 0]
(t+1) _— Yt (t+1) — pt _ L 2
Update w and b : w* =wt yarw b b* =5

The first derivatives of J with respect to w and b:

o] ] o] 1 ]
e RO L Y 5% 2. 3

(xi, Z;)EXt (xi, Z;)EXt

centre for
C I S intelligent sensing \'Q! Queeﬂ IVIary

rsity of London



The Proposed Framework

 Feature extraction
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(a) Dense trajectories [1] (b) HOF feature extraction

[1] H. Wang et al, “Dense trajectories and motion boundary descriptors for action recognition,” IJCV, 2013.
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Experiments and Results

« Experiment setup
- Data: 3 groups of data, 12 participants

- Feature: Body HOF feature
- Classifier: linear-SVM

« Experimental results

Different Models Average Accuracy (p-value)
Specific recognition model 52% (p<0.01)

Generic recognition model 35% (p=0.41)

Independent recognition model 33% (p=0.42)

Chance level 33%
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Conclusions and Future Work

 Conclusions

- The proposed two-phase learning model outperforms
the other models

- Group membership recognition results also indicates
that individuals influence each others behaviours within a
group and their nonverbal behaviours share commonalities
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Conclusions and Future Work

* Future work
— Testing with a larger database

— Applying the two-phase learning model to other
applications, such as affect recognition
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Thank you!
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