Video semantic clustering with sparse and incomplete tags

Published in: The Thirtieth AAAI Conference on Artificial Intelligence, 2016

Authors: Jingya Wang, Xiatian Zhu, Shaogang Gong

Centre for Intelligent Sensing Queen Mary University of London

Introduction

Visual Information + Textual Information

How to cluster tagged videos into semantic groups?

Difficulty:

- Visual and textual data significantly differ in representation and distribution
- Visual features: ambiguous and unreliable
- Tag: inherently sparse and incomplete

Introduction

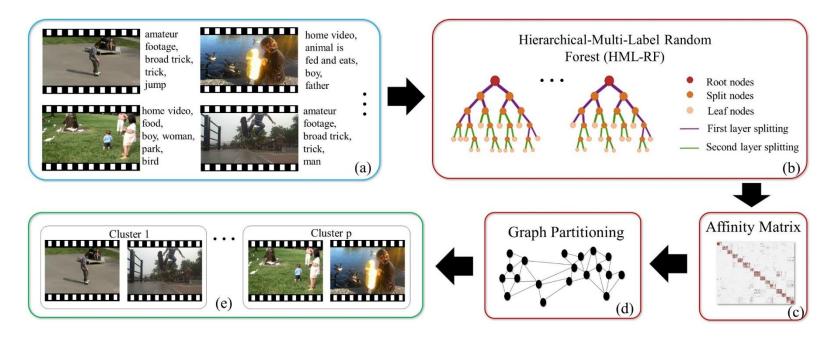
Existing methods

- Tags are organised and used in a flat structure
- Tag statistical correlations are not fully exploited

Contributions

- A novel tag-based video clustering method capable of effectively fusing information from ambiguous visual features and sparse textual tags
- A unified tag correlation based algorithm to cope with tag sparseness/incompleteness

Methods



- **➤** Limitations of existing random forests
- × Conventional clustering forest:
 - (a) fully concatenated representation
 - (b) two modalities are not balanced
- × Conventional classification forest:
 - (a) supervised

- Merits of the proposed HML-RF model
- ✓ A hybrid model of classification and clustering forests
- ✓ Jointly exploiting heterogeneous visual and tag data
- ✓ Integrating abstract-to-specific tag topology
- ✓ Handling tag sparseness and incompleteness

Methods

Hierarchical-Multi-Label Random Forest (HML-RF)

$$\Delta \psi_{\rm sl} = \psi_s - \frac{|L|}{|S|} \psi_l - \frac{|R|}{|S|} \psi_r,$$

Conventional individual information gain

where L and R denote the data set routed into the left l and right r children, The uncertainty ψ over the tag distribution was computed as Gini impurity

$$\Delta \psi_{\rm ml} = \sum_{i=1}^{m} \Delta \psi_{\rm sl}^{i}$$

Multi-tags information gain

where $\Delta \psi_{\rm sl}^i$ is individual information gain computed in the *i*-th tag.

$$\Delta \psi_{\rm hml} = \sum_{k=1}^{\mu} \left(\prod_{j=1}^{k-1} (1 - \alpha_j) \alpha_k \sum_{i \in Z_k} \Delta \psi_{\rm sl}^i \right) \text{ Adaptive hierarchical multilabel information gain}$$

where Z_k denotes the tag index set of the k-th layer in the tag hierarchy (totally μ layers), with $\bigcup_{k=1}^{\mu} Z_k = Z$, and $\forall_{j \neq k} Z_j \cap Z_k = \emptyset$. Binary flag $\alpha_k \in$ $\{0,1\}$ indicates the impurity of the k-th tag layer, $k \in \{1,\ldots,\mu\}$, i.e. $\alpha_k = 0$ when tag values are identical/pure across all the training samples S of split node s in any tag $i \in Z_k$, $\alpha_k = 1$ otherwise. The target layer is k in case that $\alpha_k = 1$ and $\forall \alpha_i = 0, 0 < j < k$.

Methods

Handling tag sparseness and incompleteness

Idea: Estimate soft tag labels (real valued) with two tag statistical correlations mined from available tag data

(I) Co-occurrence
$$\varrho_{i,j} = co_{i,j}/o_j$$
,

where $co_{i,j}$ denotes the co-occurrence frequency of tags i and $j.o_j$ denotes the number of occurrences of tag j over all samples.

once $\varrho_{i,j}$ is obtained, for a potentially missing tag $i \in Z_k$ of $\mathring{\mathbf{x}} \in S_{\text{miss}}$, we estimate its positive score $\mathring{y}_{\cdot,i}^+$ via:

$$\hat{y}_{\cdot,i}^{+} = \sum_{j \in \{Z_{k+1}, \dots, Z_{\mu}\}} \varrho_{i,j} y_{\cdot,j}$$

where $y_{\cdot,j}$ refers to the j-th tag value of $\mathring{\mathbf{x}}$.

(II) Mutual-exclusion
$$\epsilon_{i,j} = \max(0, r_{i,j}^{-+} - r_i^-)/(1 - r_i^-),$$

where r_i^- refers to negative sample percentage on tag *i* across all samples, and $r_{i,j}^{-+}$ negative sample percentage on tag *i* over samples with positive tag *j*.

we predict the negative score $\hat{y}_{\cdot,i}^-$ for ${\bf x}$ on tag i with:

$$\hat{y}_{\cdot,i}^{-} = \sum_{j \in \{Z_{k+1}, \dots, Z_{\mu}\}} \epsilon_{i,j} y_{\cdot,j},$$

Evaluations

amateur footage, freerunning home video, people, backyard

demonstration, woodworking project, man

NUS WIDE

urban, colors, building, windows, lines

Figure 3: Examples from the TRECVID MED 2011 [56] and NUS-WIDE [9] dataset.

Table 1: Com	paring clustering methods	on TREC	CVID M	ED 201	1 <mark>[56</mark>].
put mode	Method	Purity	NMI	RI	F1

Input mode	Method	Purity	NMI	RI	F1	ARI
	K-means[2]	0.26	0.19	0.88	0.14	0.08
	SpClust[14]	0.25	0.20	0.88	0.15	0.07
ViFeat	ClustRF[48]	0.23	0.17	0.87	0.14	0.08
	AffProp[62]	0.23	0.16	0.87	0.14	0.07
	MMC[63]	0.25	0.19	0.88	0.14	0.09
	K-means[2]	0.51	0.52	0.86	0.30	0.23
	SpClust[14]	0.71	0.73	0.93	0.56	0.60
BiTag	ClustRF[48]	0.77	0.81	0.94	0.64	0.60
	AffProp[62]	0.50	0.44	0.87	0.28	0.21
	MMC[63]	0.76	0.72	0.95	0.64	0.60
	K-means[2]	0.63	0.60	0.93	0.50	-
	SpClust[14]	0.82	0.76	0.96	0.69	-
DetScore	MMC[63]	0.83	0.78	0.96	0.73	-
	L-MMC[3]	0.86	0.82	0.97	0.79	-
	K-means[2]	0.51	0.49	0.90	0.34	0.24
ITE OPT 1	SpClust-cmb[14]	0.76	0.74	0.94	0.62	0.66
ViFeat&BiTag-cmb	ClustRF[48]	0.23	0.17	0.87	0.15	0.08
	AffProp[62]	0.51	0.46	0.86	0.29	0.21
	SpClust-bln[14]	0.75	0.72	0.95	0.62	0.59
	CCA+SpClust[19]	0.85	0.81	0.97	0.77	0.75
	3VCCA+SpClust[21]	0.86	0.86	0.97	0.78	0.77
ViFeat&BiTag-bln	CC-Forest 47	0.41	0.33	0.89	0.41	0.19
	AASC[13]	0.30	0.15	0.87	0.13	0.06
	MMC[63]	0.79	0.72	0.95	0.66	0.66
	DCCA[24]	0.84	0.80	0.96	0.74	0.72
	DCCAE[25]	0.84	0.80	0.97	0.75	0.73
	S-MMC[4]	0.87	0.84	0.97	0.79	-
	F-MMC[4]	0.90	0.88	0.98	0.84	-
	HML-RF(Ours)	0.94	0.90	0.98	0.88	0.87

Evaluations

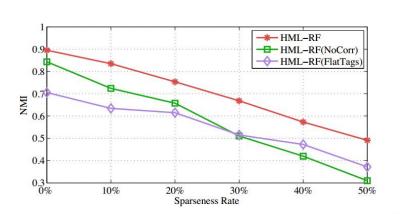


Figure 7: Evaluating the effectiveness of specific HML-RF components on TRECVID MED 2011 [56].

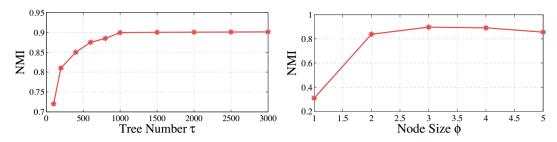


Figure 8: Clustering performance in NMI of HML-RF over different forest sizes (τ) and node size (ϕ) on TRECVID MED 2011 [56].

Thank you

