Reliable and efficient sub-Nyquist wideband spectrum sensing in cooperative cognitive radio networks

Yuan Ma

- Efficient Sub-Nyquist Wideband Signal Acquisition
- Accurate Detection with Low Computation Complexity
- Real-world TVWS Signal Analysis

Proposed approach

- Blind sub-Nyquist wideband signal acquisition through multicoset sampling;
- Low-dimensional measurement matrix construction based on subspace decomposition;
- Joint sparse recovery by fusing measurements shared among the SUs to reach a global sensing decision with enhanced accuracy.

CIS centre for intelligent sensing

Results and conclusion

- Reduced energy consumption on wideband signal acquisition, processing, and transmission with detection performance guarantee;
- Reliable cooperative spectrum sensing achieved at the Landau's rate.

Approach	Transmission Overhead	Local Computation Complexity	Global Computation Complexity
SOMP [30]	$O(\kappa N)$	—	$O(\kappa^2 NLJ)$
DOMP [27]	$O(\kappa)$	$O(\kappa^2 NL)$	$O(\kappa J log J)$
SA-SOMP	$O(\kappa^2)$	$O(\kappa^2 N + \kappa^3)$	$O(\kappa^3 LJ)$

Reliable and Efficient Sub-Nyquist Wideband Spectrum Sensing in Cooperative Cognitive Radio Networks Y. Ma, Y. Gao, Y.-C. Liang, and S. Cui IEEE Journal on Selected Areas in Commun. (JSAC), vol. 34, no. 10, pp. 2750–2762, Oct. 2016

CIS centre for intelligent sensing

