POKer: a Partial Order Kernel for Comparing Strings with Alternative Substrings

Maryam Abdollahyan

- String comparison
 - A fundamental operation in many areas, e.g. bioinformatics
 - Strings may contain alternative substrings that can be substituted for each other
 - Alternative substrings can be of *different* lengths

Figure from the "Multiple sequence alignment using partial order graphs" paper by C. Lee, C. Grasso and M.F. Sharlow

CIS centre for intelligent sensing

The Partial Order Kernel

- Represent each string as a directed acyclic graph
- Find the optimal local alignment between all possible choices of paths in the two graphs
- Sum the alignment scores
- Computed using dynamic programming

Results and conclusion

elligent sensing

- Evaluated with SVMs in a multi-class classification scenario
- *Better* performance compared to a *k*-mer based kernel

No. of classes	POKer	Spectrum kernel
5	98.4%	93.4%
10	98.1%	90.1%
20	97.8%	86.4%
40	96.4%	82%

Mean ROC Score

 An effective algorithm for classification of strings, with low computational complexity and rich mathematical properties as a kernel

POKer: a Partial Order Kernel for Comparing Strings with Alternative Substrings Maryam Abdollahyan and Fabrizio Smeraldi European Symposium on Artificial Neural Networks (ESANN), 2017, Bruges – Belgium

