SensingKit: Evaluating the Sensor **Power Consumption in iOS devices**

Kleomenis Katevas

- A continuous sensing framework for Android and iOS platforms.
- Supports most sensors available in a ٠ mobile device.
- Power efficient proximity tracking using ٠ Bluetooth Smart (BLE).
- Easily extensible using a modular design.
- Available in open-source under the GNU ٠ LGPL v3.0.
- For more info, check www.sensingkit.org.

SensingKit

Sensor power consumption evaluation

- Evaluated seven sensors separately using CrowdSence App.
- Motion and Orientation sensors at 100Hz.
- Location sensor using 'Best Accuracy' configuration.
- Microphone sensor at 44100.0Hz.
- iBeacon™ sensor in 'Broadcast', 'Scan', and 'Scan & Broadcast' mode (1Hz).

●●○○○ EE WiFiCall 🗢	19:57	1 🛡 💲 16% 🌅
About	CrowdSense	Edit
Motion & Proxin 09/02/2016, 08:54:56	nity Recording	>
Proximity 2 21/01/2016, 11:38:55		>
Dist Exp 02/12/2015, 11:04:02		>
Experiment 25/11/2015, 12:21:59		>
Audio Recordine 25/11/2015, 12:20:33	9	>
New Recording 25/11/2015, 12:17:01		>
Calibrate 25/11/2015, 12:15:09		>
		New Recording

Setup Sensor Setup	7 0 3 15%
Accelerometer	Off >
Gyroscope	Off >
Magnetometer	Off >
Device Motion	Off >
Motion Activity	Off >
Pedometer	Off >
Altimeter	Off >
Location	Off >
iBeacon™ Proximity	Off >
Eddystone™ Proximity	Off >
Battery	Off >
Microphone	Off >

Results and conclusion

- iBeacon[™] Broadcast recording was close to the 'idle' configuration, while modes 'Scan' vs. 'Scan & Broadcast' performed equally.
- Results suggest that power consumption of iBeacon[™] sensor in broadcasting mode has almost no effect on the device's battery.
- Location sensor is very expensive, close to the Device Motion sensor.

SensingKit: Evaluating the Sensor Power Consumption in iOS devices Kleomenis Katevas, Hamed Haddadi and Laurissa Tokarchuk 12th International Conference on Intelligent Environments (IE'16), September 2016, London, UK.

CIS centre for intelligent sensing

