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Some research objectives

Reconstruct 3D scenes from images
Model 3D scene-statistics
Understand human binocular vision

Applications:
— View synthesis, augmented reality
— Re-rendering for 3D displays
— Active robot vision
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Intelligent Sensing

 Intelligent sensors should interact with the environment

« Adjust camera positions in relation to scene (active
vision, SLAM)

« Actively probe the scene (structured light, time-of-flight)

« Would help to have a prior statistical model of the scene

Examples of these strategies can be found in animals
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Parallax-based 3D reconstruction

Traditional method, e.g. depth from binocular disparity
Cameras must be calibrated

Main problems are mismatched / unmatched regions
Can use the same images (textures) for rendering

| scene

optical centres

images

a4

centre for
CIS intelligent sensing \E‘:_,_:l Queen IVIary

University of London



Epipolar geometry

fixation

o

matching

given point

epipole epipole

* Epipolar line in one image < ray through other image
« Search for correspondences is limited to 1D
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Human binocular vision

* Eye-movements are highly coordinated
* There is always an (approximate) 3D fixation-point

« Listing’'s Law determines the torsion of the eyes
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Advantages of active stereo

« Accuracy of depth estimation can be improved
 Calibration problem is simplified
« Some extra depth cues (e.g. vergence)

« Search for corresponding points is reduced
— Most features around the fixation-point have small disparity

— Assuming that the 3D world is piecewise-smooth

* Not used by all animals (e.g. owls)
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Fixation and epipolar geometry

fixation
point

o horopter

computed
point

' given point

[ L
epipole epipole

« Horopter projects identically in the images
« Has the 3D form of a circle+line in fixating case
« A good parameterization of epipolar geometry (F matrix)
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Time-of-flight (TOF) cameras

« Active depth-sensing devices (infrared)

« Optically similar to a camera (lens, CCD, etc)

« Estimates distance to scene along each ray

« Works by measuring phase delay of pulsed-light
* Very low spatial resolution (e.g. 176 x 144)
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Time-of-Flight principle

« Emitted signal: f(t) = a cos(wt)
« Received signal: g(t) = b cos(wt + @)

« Distance is proportional to phase: d = D%

« D iIs the maximum unambiguous range of the sensor

speed of light
2X20MHz

* For example, D = ~ 7.5m

« Ambiguous for further distances
* Albedo is related to amplitude b

« Confidence in can also be estimated from amplitude
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Time-of-Flight measurement

* Frequency w of g(t) = b cos(wt + @) is known

« Take four equally-spaced samples per period T = il

. gk=bcos(w(%T)+<p)
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go = b cos(p)
g1 = —bsin(p)
g2= —b cos(p)
gs = bsin(¢)

o = tan_l <g3 - «g1>
do — 92

1
b = E\/(QB — g1)% + (go — 92)*
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Biological analogies

« Bats also estimate distance from (sound) reflections
e But not by simple phase measurements

Also dolphins, electric fish, etc
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Stereo vs TOF reconstruction

Need the TOF/stereo transformation for rendering

TOF 3D contains a lot of local errors

— Sensor noise

— Scattering surfaces

Stereo 3D often has global errors

— Overall distortion of the scene

— Caused by lack of camera calibration

The two reconstructions are complementary
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Mixed camera-systems

« Each system provides two 3-D reconstructions
 One TOF camera + two high-resolution RGB cameras
« Several of these TOF+2RGB systems can be combined
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Projective alignment: theory

« TOF/stereo viewpoints and methods are different
« How are the two reconstructions related in 3D?

* Not just rotation, translation and scale

« But flat surfaces are flat in both reconstructions

» Flatness-preserving transformations are projective
« Examples of projectively equivalent shapes in 2D:
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Projective alignment: algorithm

 Align the uncalibrated stereo reconstruction to the TOF
data, by 3D projective transformation

« Can be done by a linear method (SVD based)

 Now any TOF point can be projected into the images, so
the model can be rendered

Stereo TOF Combined
reconstruction reconstruction reconstruction
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Reprojection results

* To associate a colour with each 3-D point:
— Backproject the TOF pixels to XYZ in the scene
— Reproject them into RGB views (using estimated cameras)

s R AR

Left, TOF, and right images, colour-coded by depth
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Reprojection results - detall
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Wide-baseline example
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Resolution mismatch
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Problems at depth-boundaries
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Full four-system configuration

Setup is designed for 360° capture of human figures
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Multi-system alignment

« Each TOF+2RGB system has been calibrated

« We now align the four stereo reconstructions

* One system is chosen to be the reference-frame
 We use (4-1) rigid + 4x2 projective transformations

Top view
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Meshing

« Complete figure + room reconstructions give rise to
difficult meshing problems

« Use the TOF data to pre-segment the figure

« Background can then be meshed easily, using a local
method

« The figure can be meshed using a global method (e.qg.
Poisson Reconstruction)

« Also allows one or more figures to be placed in an
alternative background

* No completely satisfactory solution yet!
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Rendering

* Mesh representation is rendered using standard
graphics hardware (OpenGL shaders)

« An additional advantage of the alignment method is that
multiple textures are available

* Blended, or switched according to relationship between
the surface and viewpoint

* Models are rendered in real-time, using live TOF+RGB
data.
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Segmented figure

The cuboids represent one of the TOF+2RGB systems
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Rendered figure & background

Note sharp boundary between figure and background
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Rendered figure & background

O]

Top view of a three-system reconstruction
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Reprojected figure-mesh

3D mesh, reprojected into one of the texture-images
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Figure reconstructions
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Springer monograph (2012)

SPRINGER BRIEFS IN COMPUTER SCIENCE

Collaborators

| « Radu Horaud, Georgios
' S a— Evangelidis, Michel Amat
= T|me'0f'F||ght — INRIA Grenoble, France

Cam?ras » Seungkyu Lee, Ouk Choi
| Principles, Methods — Samsung Advanced Institute of
and App|i(a’[ion5 Technology, South Korea

les Hansard - Seunakvu

Ou Chi . aHorad .

@ Springer
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Random scenes

« Highly cluttered environments, in which the depth-
structure is not dominated by any particular object

« E.g. forests (important for evolution!)
* Very wide-angle laser range-scan:
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Geometric model
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« Left: Green rectangle must be empty for visibility
* Right: Both must be empty for binocular visibility
* Red line is the scene-boundary (empty in front)
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Scene and observer models

 If scene has a Poisson distribution of intensity A, then
distance to visible object has exponential distribution F:

prob(s|A) = F(s, 2el)
« This is not realistic in typical imaging conditions

« Peak of distribution along any ray would be at zero (the
optical centre)

« Impose a scene-boundary, at random distance from the
observer, according to Gaussian distribution G:

prob(t|0,u,o0) =G (t = d )

’cos 0’ sin 6
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Binocular joint-distribution

« Total distance to first object along a ray is the scene-
penetration plus the distance to the scene-boundary

* Probability of a sum p = s + t is the convolution of the
densities F(s) and G (t)
« This is a re-parameterized ex-Gaussian distribution H:

B U
prob(p|6) = H (p, 2€4, pr:Y 9)

« Tend to see fewer distant objects, In clutter

* A point is binocularly visible if both left and right rays are
unobstructed:

prob(py, pr) = prob(p.|68;) X prob(pg|6g)
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Fits to forest data

* The parameters to be estimated are 2¢A, u and o

_ H o
prob(pl9) = H ('D' 2eh, cos 0’ cos 9)

« Each fit defines a one-parameter family, ranging from
coarse/dense to fine/sparse
« Maximum Likelihood fits, by numerical minimization:

o
—

- i
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Monocular conditional-distribution

o Joint-distribution determines several other distributions

« But the joint-distribution is not observable; it is
parameterized by scene-distances

* More useful to ask: given an image point in one view,
where Is the corresponding point in the other view?

« This is the conditional distribution along an epipolar line:
prob(6g|6.,) = prob(p., pr) X Jr(0r)/Sr(6.)
« Jacobian J(6r) and normalizing constant S,(6;) ensure

that prob(63|6,) is a proper probability density
 Tend to see more of a scene, ‘per pixel’, in the distance
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Prediction of re-projected forest data

CIS

 The image densities can be used as Bayesian priors for
Image-matching in cluttered scenes

« These are predictions, not fits, given the estimated density:
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Intelligent Sensing

 Intelligent sensors should interact with the environment

« Adjust camera positions in relation to scene (active
vision, SLAM)

« Actively probe the scene (structured light, time-of-flight)

« Would help to have a prior statistical model of the scene

Examples of these strategies can be found in animals
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