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Some research objectives 

• Reconstruct 3D scenes from images 

• Model 3D scene-statistics 

• Understand human binocular vision 

• Applications: 

– View synthesis, augmented reality 

– Re-rendering for 3D displays 

– Active robot vision 



Intelligent Sensing 

• Intelligent sensors should interact with the environment 

• Adjust camera positions in relation to scene (active 

vision, SLAM) 

• Actively probe the scene (structured light, time-of-flight) 

• Would help to have a prior statistical model of the scene 

• Examples of these strategies can be found in animals 



Parallax-based 3D reconstruction 

• Traditional method, e.g. depth from binocular disparity 

• Cameras must be calibrated 

• Main problems are mismatched / unmatched regions 

• Can use the same images (textures) for rendering 
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Epipolar geometry 

• Epipolar line in one image ↔ ray through other image 

• Search for correspondences is limited to 1D 



Human binocular vision 

• Eye-movements are highly coordinated 

• There is always an (approximate) 3D fixation-point 

• Listing’s Law determines the torsion of the eyes 



Advantages of active stereo 

• Accuracy of depth estimation can be improved 

• Calibration problem is simplified 

• Some extra depth cues (e.g. vergence) 

• Search for corresponding points is reduced 

– Most features around the fixation-point have small disparity 

– Assuming that the 3D world is piecewise-smooth  

• Not used by all animals (e.g. owls) 



Fixation and epipolar geometry 

• Horopter projects identically in the images 

• Has the 3D form of a circle+line in fixating case 

• A good parameterization of epipolar geometry (F matrix) 



Time-of-flight (TOF) cameras 

• Active depth-sensing devices (infrared) 

• Optically similar to a camera (lens, CCD, etc) 

• Estimates distance to scene along each ray 

• Works by measuring phase delay of pulsed-light 

• Very low spatial resolution (e.g. 176 × 144) 

• No colour! 
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Time-of-Flight principle 

• Emitted signal: 𝑓 𝑡 = 𝑎 cos(𝜔𝑡) 

• Received signal: 𝑔 𝑡 = 𝑏 cos(𝜔𝑡 + 𝜑) 

• Distance is proportional to phase: 𝑑 = 𝐷
𝜑

2𝜋
  

• 𝐷 is the maximum unambiguous range of the sensor  

• For example, 𝐷 =
speed of light

2×20MHz
≈ 7.5m 

• Ambiguous for further distances 

• Albedo is related to amplitude 𝑏  

• Confidence in can also be estimated from amplitude 



Time-of-Flight measurement 

• Frequency 𝜔 of 𝑔 𝑡 = 𝑏 cos(𝜔𝑡 + 𝜑) is known 

• Take four equally-spaced samples per period 𝑇 =
2𝜋

𝜔
 

• 𝑔𝑘 = 𝑏 cos 𝜔
𝑘𝑇

4
+ 𝜑  𝑔0 = 𝑏 cos 𝜑  

   𝑔1 = −𝑏 sin 𝜑  

  𝑔2= −𝑏 cos 𝜑  

𝑔3 = 𝑏 sin 𝜑  
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Biological analogies 

• Bats also estimate distance from (sound) reflections 

• But not by simple phase measurements  

 

Also dolphins, electric fish, etc 



Stereo vs TOF reconstruction 

• Need the TOF/stereo transformation for rendering 

• TOF 3D contains a lot of local errors 

– Sensor noise 

– Scattering surfaces 

• Stereo 3D often has global errors 

– Overall distortion of the scene 

– Caused by lack of camera calibration 

• The two reconstructions are complementary 



Mixed camera-systems 

• Each system provides two 3-D reconstructions 

• One TOF camera + two high-resolution RGB cameras 

• Several of these TOF+2RGB systems can be combined 



Projective alignment: theory 

• TOF/stereo viewpoints and methods are different 

• How are the two reconstructions related in 3D? 

• Not just rotation, translation and scale 

• But flat surfaces are flat in both reconstructions 

• Flatness-preserving transformations are projective 

• Examples of projectively equivalent shapes in 2D: 



Projective alignment: algorithm 

• Align the uncalibrated stereo reconstruction to the TOF 

data, by 3D projective transformation 

• Can be done by a linear method (SVD based) 

• Now any TOF point can be projected into the images, so 

the model can be rendered 
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Reprojection results 

• To associate a colour with each 3-D point: 

– Backproject the TOF pixels to XYZ in the scene 

– Reproject them into RGB views (using estimated cameras) 

 

 

 

 

Left, TOF, and right images, colour-coded by depth 



Reprojection results - detail 



Wide-baseline example 



Resolution mismatch 



Problems at depth-boundaries 



From TOF to dense depth 



Full four-system configuration 

Setup is designed for 360° capture of human figures 



Multi-system alignment 

• Each TOF+2RGB system has been calibrated 

• We now align the four stereo reconstructions 

• One system is chosen to be the reference-frame 

• We use (4-1) rigid + 4×2 projective transformations 

Top view 



Meshing 

• Complete figure + room reconstructions give rise to 

difficult meshing problems 

• Use the TOF data to pre-segment the figure 

• Background can then be meshed easily, using a local 

method 

• The figure can be meshed using a global method (e.g. 

Poisson Reconstruction) 

• Also allows one or more figures to be placed in an 

alternative background 

• No completely satisfactory solution yet! 



Rendering 

• Mesh representation is rendered using standard 

graphics hardware (OpenGL shaders) 

• An additional advantage of the alignment method is that 

multiple textures are available 

• Blended, or switched according to relationship between 

the surface and viewpoint 

• Models are rendered in real-time, using live TOF+RGB 

data. 



Segmented figure 

The cuboids represent one of the TOF+2RGB systems 



Rendered figure & background 

Note sharp boundary between figure and background 



Rendered figure & background 

Top view of a three-system reconstruction 



Reprojected figure-mesh 

3D mesh, reprojected into one of the texture-images 



Figure reconstructions 



Springer monograph (2012) 

• Radu Horaud, Georgios 

Evangelidis, Michel Amat  

– INRIA Grenoble, France 

• Seungkyu Lee, Ouk Choi  

– Samsung Advanced Institute of 

Technology, South Korea 

Collaborators 



Random scenes 

• Highly cluttered environments, in which the depth-

structure is not dominated by any particular object 

• E.g. forests (important for evolution!) 

• Very wide-angle laser range-scan: 



Geometric model 

• Left: Green rectangle must be empty for visibility 

• Right: Both must be empty for binocular visibility 

• Red line is the scene-boundary (empty in front) 



Scene and observer models 

• If scene has a Poisson distribution of intensity λ, then 

distance to visible object has exponential distribution 𝐹: 

 

• This is not realistic in typical imaging conditions 

• Peak of distribution along any ray would be at zero (the 

optical centre) 

• Impose a scene-boundary, at random distance from the 

observer, according to Gaussian distribution 𝐺: 

  

prob 𝑠 λ = 𝐹(𝑠, 2𝜀𝜆) 

prob 𝑡 𝜃, 𝜇, 𝜎) = 𝐺 𝑡,
𝜇

cos 𝜃
,

𝜎

sin 𝜃
  



Binocular joint-distribution 

• Total distance to first object along a ray is the scene-

penetration plus the distance to the scene-boundary 

• Probability of a sum ρ = 𝑠 + 𝑡 is the convolution of the 

densities 𝐹(𝑠) and 𝐺(𝑡) 

• This is a re-parameterized ex-Gaussian distribution 𝐻: 

 

 

• Tend to see fewer distant objects, in clutter 

• A point is binocularly visible if both left and right rays are 

unobstructed: 

prob 𝜌|𝜃 = 𝐻 𝜌, 2𝜀𝜆,
𝜇

cos 𝜃
,

𝜎

cos 𝜃
 

prob 𝜌𝐿, 𝜌𝑅 = prob 𝜌𝐿|𝜃𝐿 × prob 𝜌𝑅|𝜃𝑅  



Fits to forest data 

prob 𝜌|𝜃 = 𝐻 𝜌, 2𝜀𝜆,
𝜇

cos 𝜃
,

𝜎

cos 𝜃
 

• The parameters to be estimated are 2𝜀𝜆, 𝜇 and 𝜎 

 

 

• Each fit defines a one-parameter family, ranging from 

coarse/dense to fine/sparse  

• Maximum Likelihood fits, by numerical minimization: 



Monocular conditional-distribution 

• Joint-distribution determines several other distributions 

• But the joint-distribution is not observable; it is 

parameterized by scene-distances 

• More useful to ask: given an image point in one view, 

where is the corresponding point in the other view? 

• This is the conditional distribution along an epipolar line: 

 

 

• Jacobian 𝐽𝑅 𝜃𝑅  and normalizing constant 𝑆𝑅 𝜃𝐿  ensure 

that prob 𝜃𝑅|𝜃𝐿  is a proper probability density 

• Tend to see more of a scene, ‘per pixel’, in the distance 

prob 𝜃𝑅|𝜃𝐿 = prob 𝜌𝐿, 𝜌𝑅 × 𝐽𝑅 𝜃𝑅 /𝑆𝑅 𝜃𝐿  



Prediction of re-projected forest data 

• The image densities can be used as Bayesian priors for 

image-matching in cluttered scenes 

• These are predictions, not fits, given the estimated density: 



Intelligent Sensing 

• Intelligent sensors should interact with the environment 

• Adjust camera positions in relation to scene (active 

vision, SLAM) 

• Actively probe the scene (structured light, time-of-flight) 

• Would help to have a prior statistical model of the scene 

• Examples of these strategies can be found in animals 


