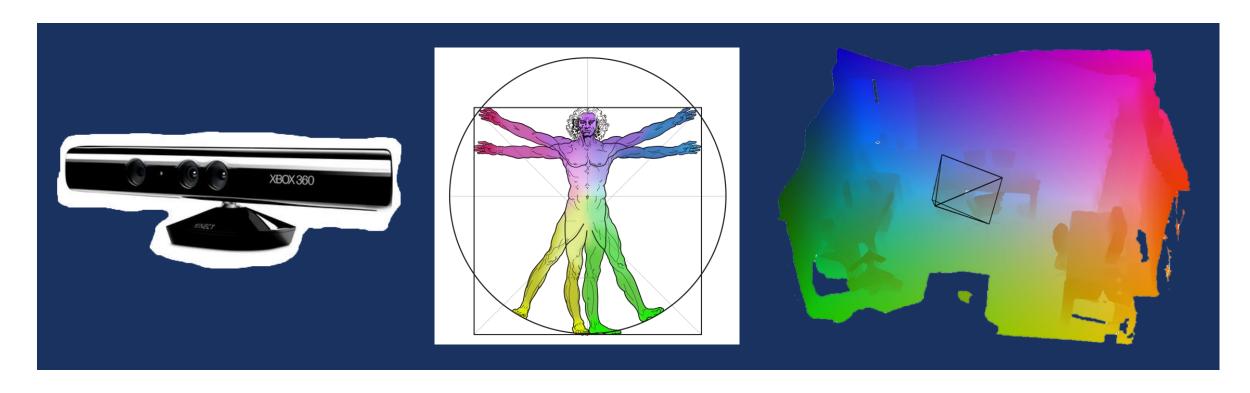
Research

DEPTH, YOU, AND THE WORLD

JAMIE SHOTTON



Kinect Adventures

- Depth sensing camera
- Tracks 20 body joints in real time
- Recognises your face and voice



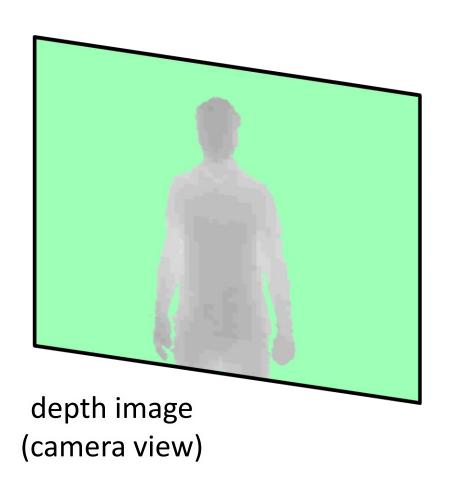
Advances in Computer Vision and Pattern Recognition

Andrea Fossati Juergen Gall Helmut Grabner Xiaofeng Ren Kurt Konolige *Editors*

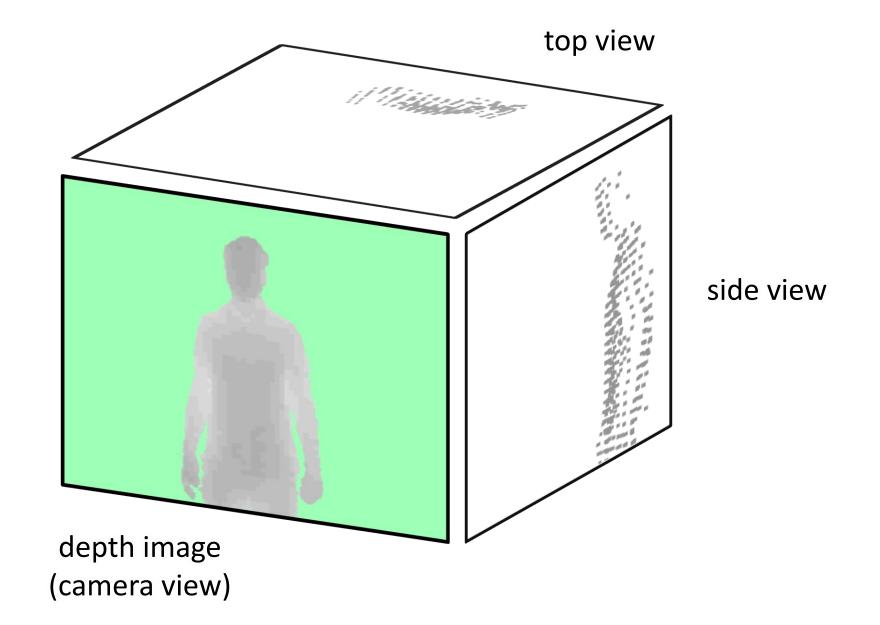
Consumer Depth Cameras for Computer Vision

Research Topics and Applications

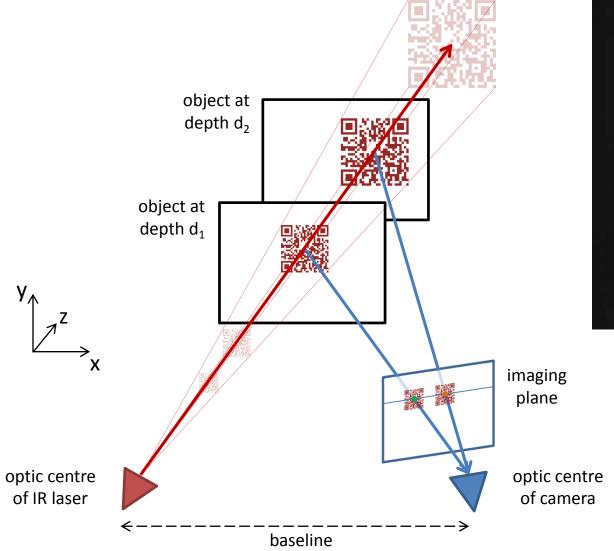
What the Kinect Sees

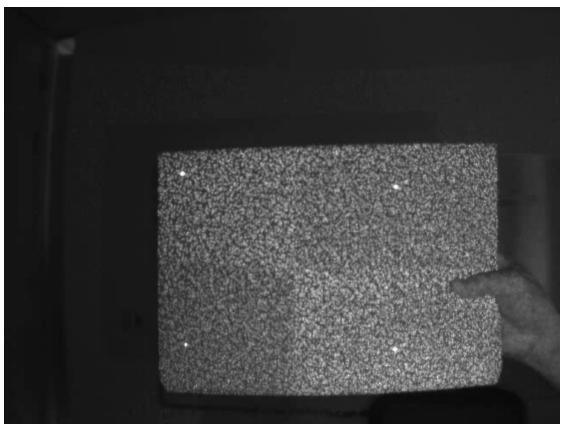


What the Kinect Sees



Structured light



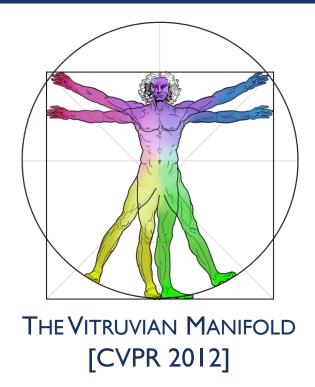


Depth Makes Vision That Little Bit Easier

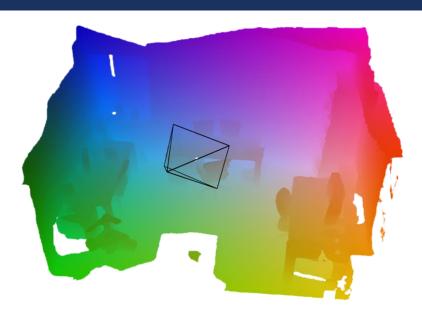
RGB DEPTH

☑ Only works well lit
☑ Works in low light

ROADMAP



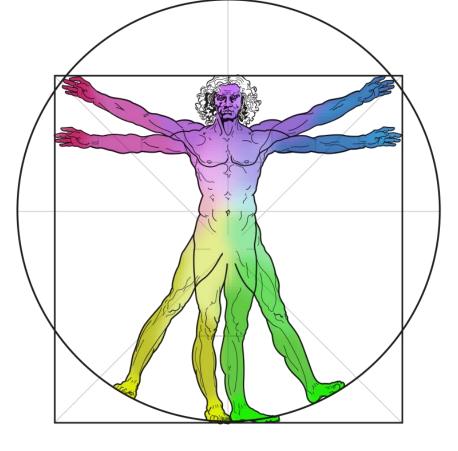
Unifying principal:



SCENE COORDINATE REGRESSION [CVPR 2013]

Per-pixel regression drives per-image model fitting

THE VITRUVIAN MANIFOLD



Jonathan Taylor

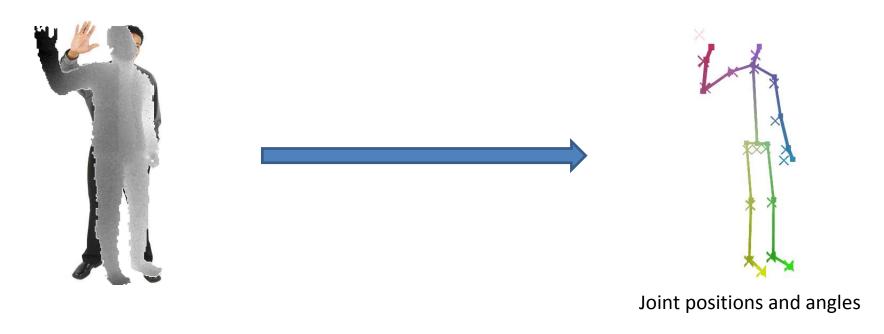
Jamie Shotton

Toby Sharp

Andrew Fitzgibbon

Human Pose Estimation

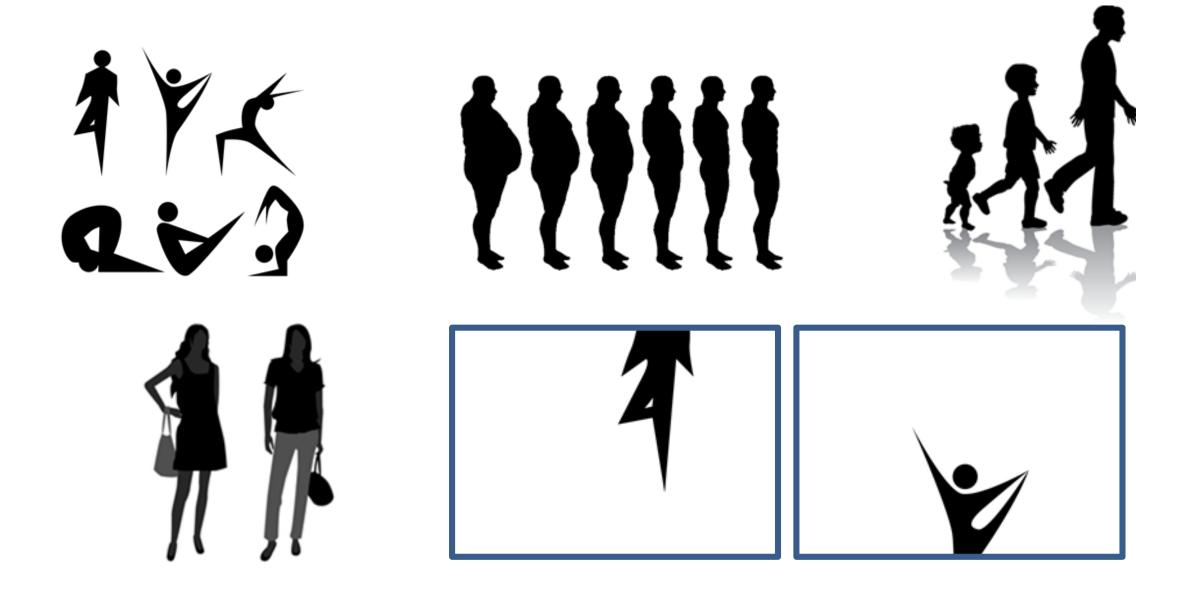
Given some image input, recover the 3D human pose:



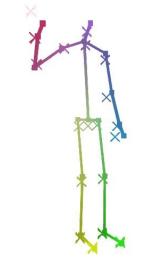
In this work:

- Single frame at a time (no tracking)
- Kinect depth image as input (background removed)

Why is Pose Estimation Hard?



A Few Approaches



Regress directly to pose?

e.g. [Gavrila '00] [Agarwal & Triggs '04]

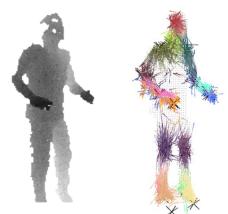
Detect and assemble parts?

e.g. [Felzenszwalb & Huttenlocher '00] [Ramanan & Forsyth '03] [Sigal et al. '04]

Detect parts?

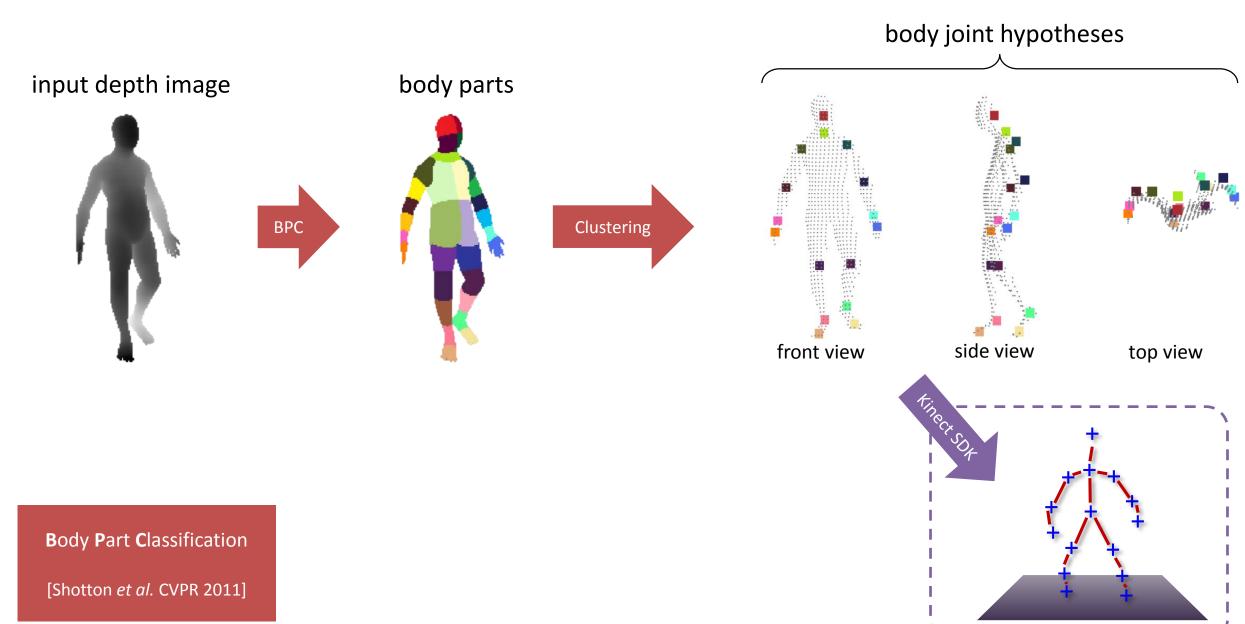
e.g. [Bourdev & Malik '09] [Plagemann et al. '10] [Kalogerakis et al. '10]

Per-Pixel Body Part Classification [Shotton et al. '11]



Per-Pixel Joint Offset Regression [Girshick et al. '11]

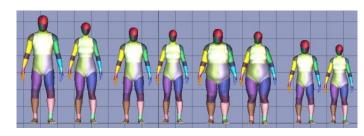
Background: Learning Body Parts for Kinect



Synthetic Training Data

Record mocap 100,000s of poses

Retarget to varied body shapes



Render (depth, body parts) pairs

Train invariance to:

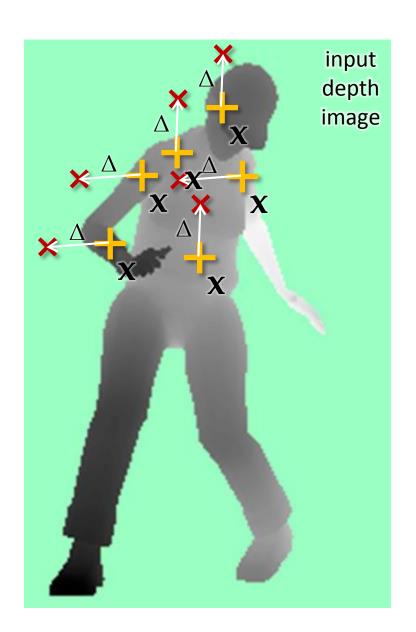
Depth Image Features

- Depth comparisons
 - very fast to compute

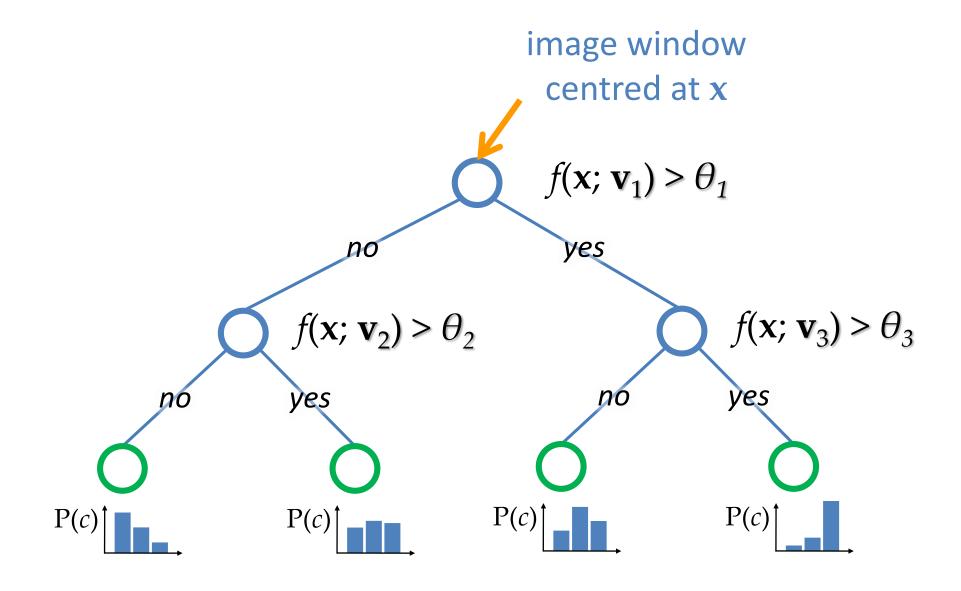
feature feature
$$f(\mathbf{x}; \mathbf{v}) = d(\mathbf{x}) - d(\mathbf{x} + \Delta)$$
 image coordinate

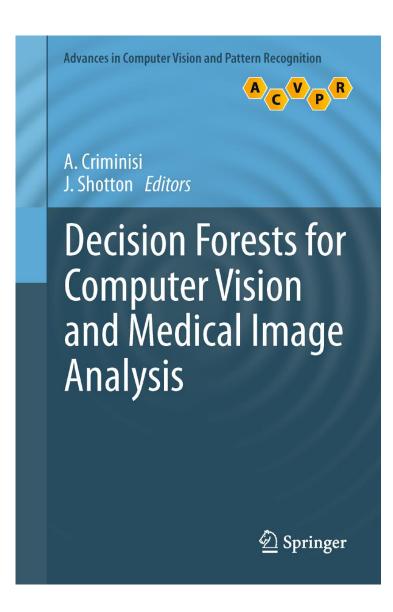
$$\Delta = \frac{\mathbf{v}}{d(\mathbf{x})}$$
scales inversely with depth

Background pixels d =large constant



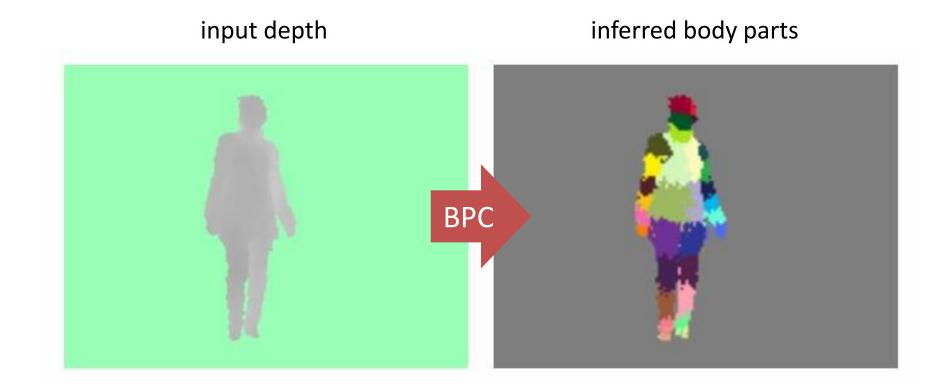
Decision tree classification

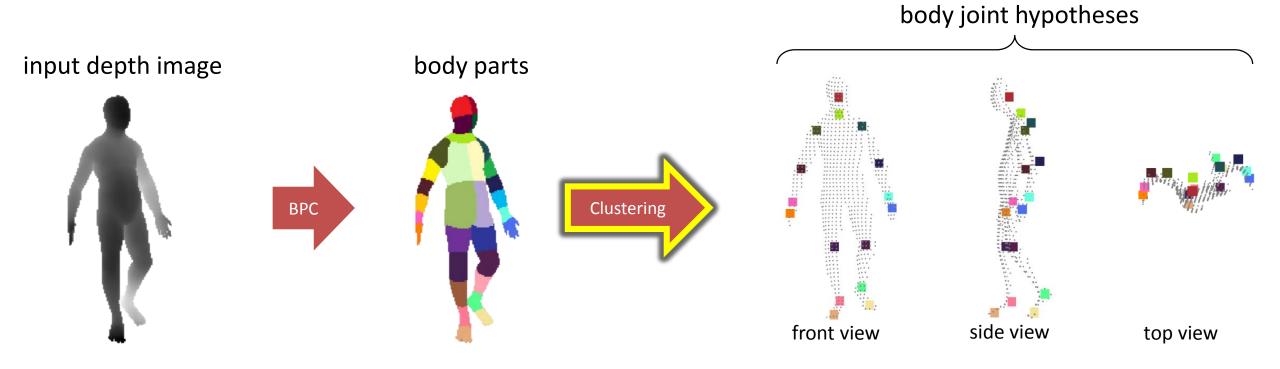




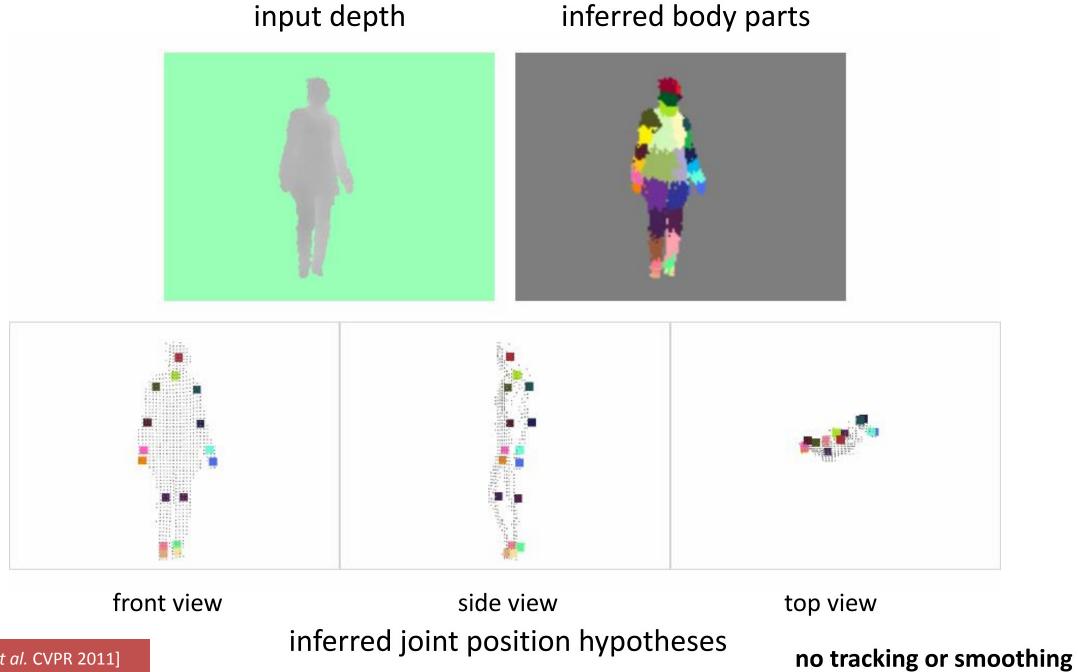
Decision Forests Book

- Theory Tutorial & Reference
- Practice Invited Chapters
- Software and Exercises
- Tricks of the Trade

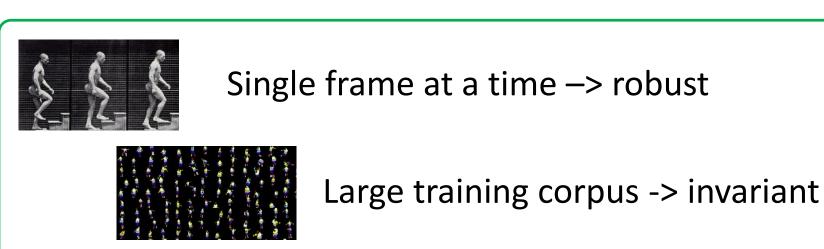




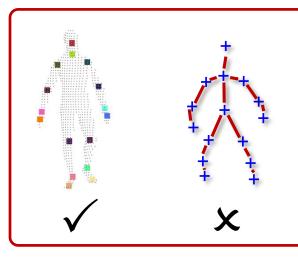
Mean shift mode detection on density



Body Part Recognition in Kinect



Fast, parallel implementation



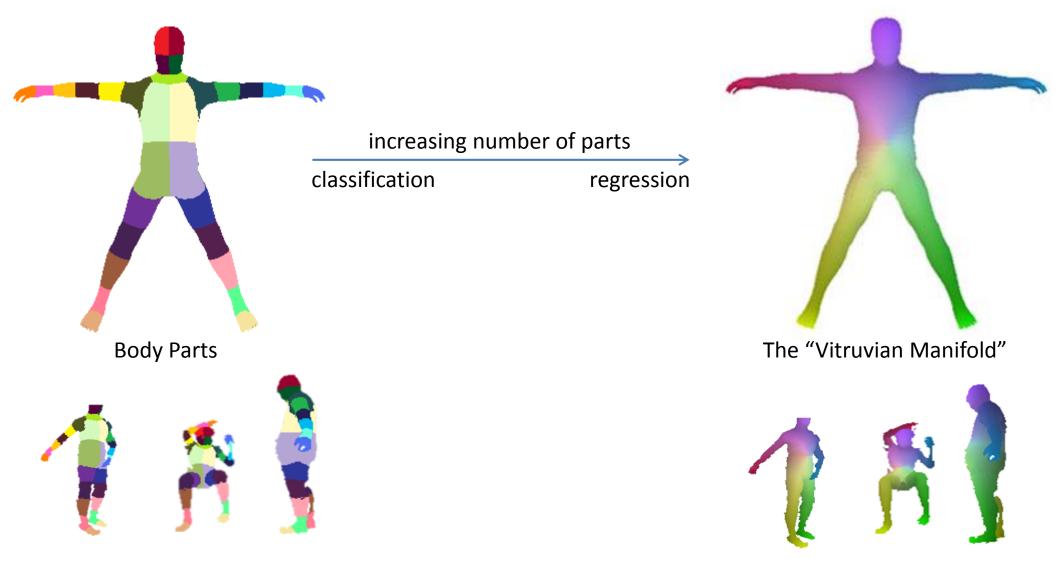
No kinematic skeleton
Limited handling of occlusion

A few approaches

Explain the data directly with a mesh model [Ballan et al. '08] [Baak et al. '11]

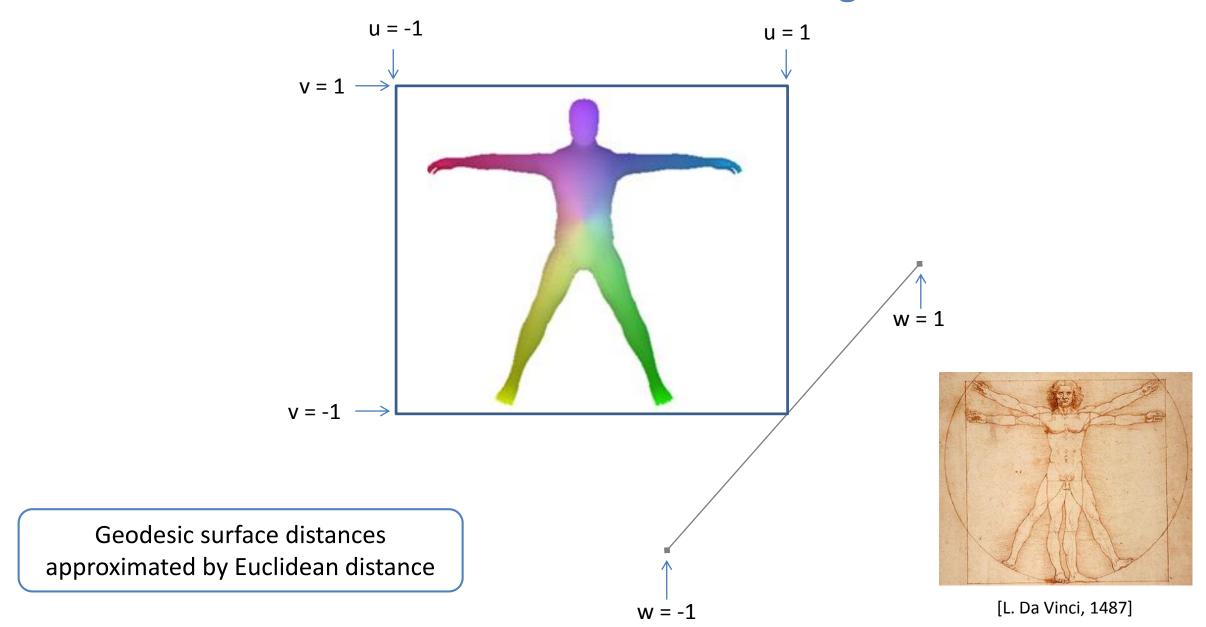
- GOOD: Full skeleton
- GOOD: Kinematic constraints enforced from the outset
- GOOD: Able to cope with occlusion and cropping
- BAD: Many local minima
- BAD: Highly sensitive to initial guess
- BAD: Potentially slow

From Body Parts to Dense Correspondences

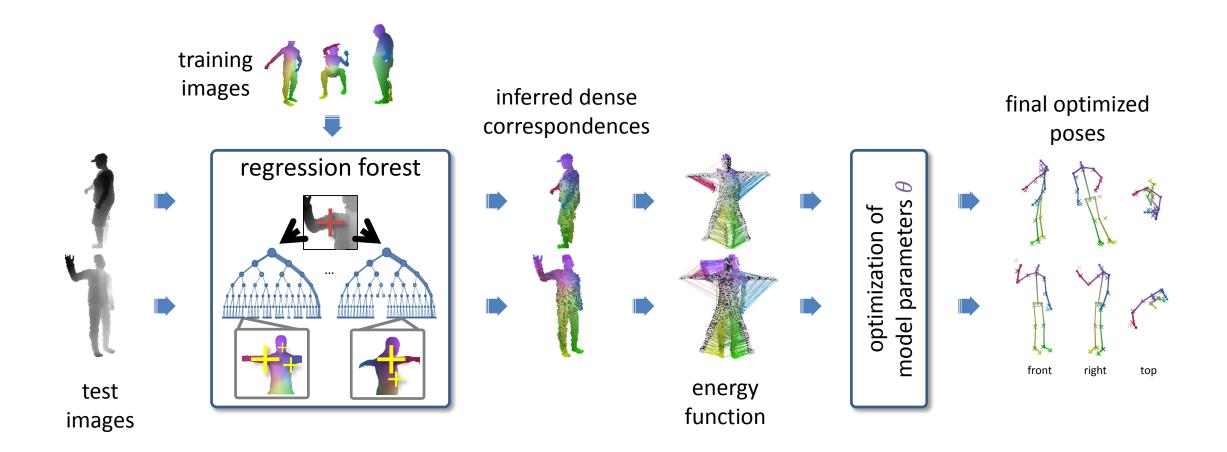


Texture is mapped across body shapes and poses

The "Vitruvian Manifold" Embedding in 3D



Overview

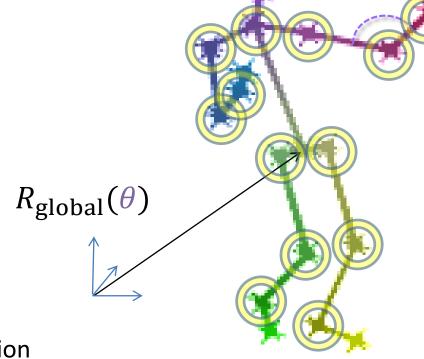


Human Skeleton Model

- Mesh is attached to a hierarchical skeleton
- Each limb l has a transformation matrix $T_l(\theta)$ relating its local coordinate system to the world:

$$T_{\text{root}}(\theta) = R_{\text{global}}(\theta)$$

 $T_l(\theta) = T_{\text{parent}(l)}(\theta)R_l(\theta)$



 $R_{\text{l_arm}}(\theta)$

- $R_{
 m global}(heta)$ encodes a global scaling, translation and rotation
- $R_l(\theta)$ encodes a rotation and fixed translation relative to its parent
- 13 parameterized joints using quaternions to represent unconstrained rotations
- This gives θ a total of 1 + 3 + 4 + 4 * 13 = 60 degrees of freedom

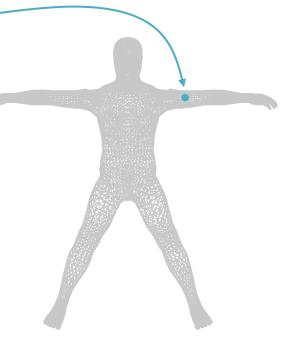
Linear Blend Skinning

Each vertex *u*

- has position p in base pose θ_0
- is attached to *K* limbs $\{l_k\}_{k=1}^K$ with weights $\{\alpha_k\}_{k=1}^K$

In a new pose θ , the skinned position u of is:

$$M(u;\theta) = \sum_{k=1}^{K} \alpha_k T_{l_k}(\theta) T_{l_k}^{-1}(\theta_0) p$$
position in limb l_k 's coordinate system
position in world coordinate system



Mesh in base pose θ_0

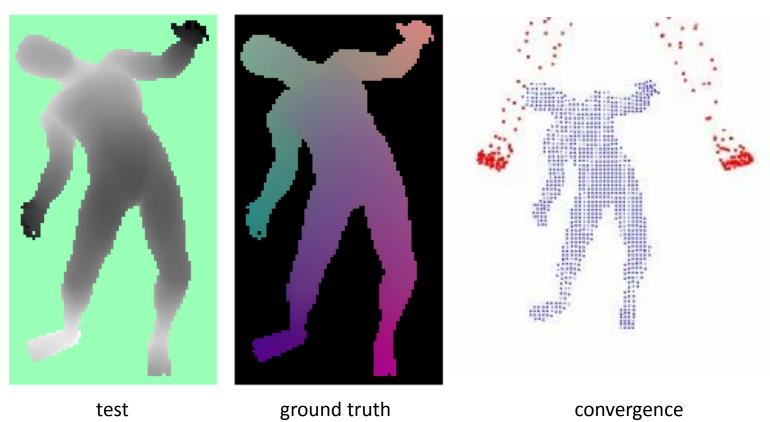
Test Time Model Fitting

Optimization Strategies

- Alternating between pose θ and correspondences $u_1, \dots u_n$
 - Iterative Closest Point (ICP)
- Traditionally, start from initial heta
 - from tracking or manual initialization
- Instead, we start from initial $u_1, \dots u_n$
 - inferred discriminatively
- "One-shot" pose estimation
 - can we achieve a good result without iterating?

One-Shot Pose Estimation: An Early Result

Can we achieve a good result without iterating?

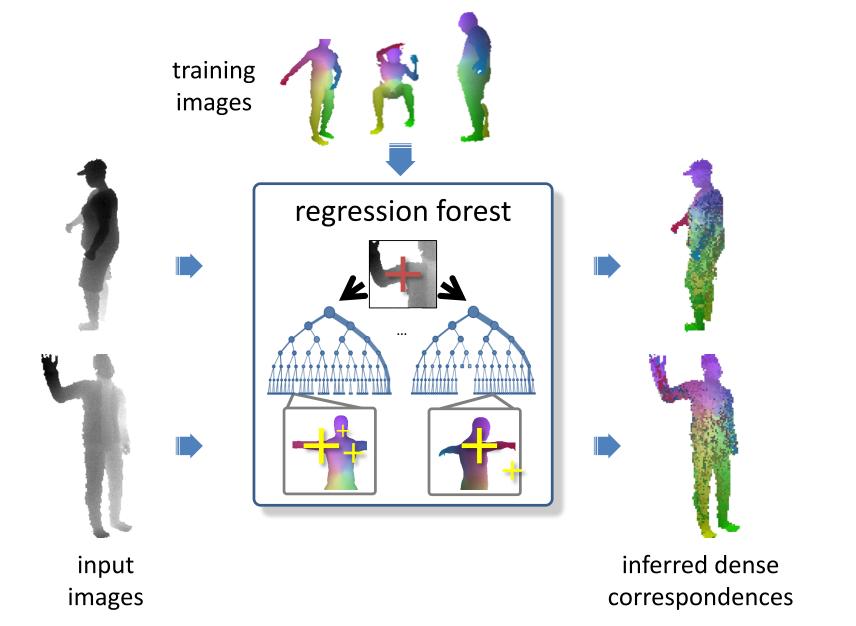


test depth image

ground truth correspondences (legacy coloring scheme)

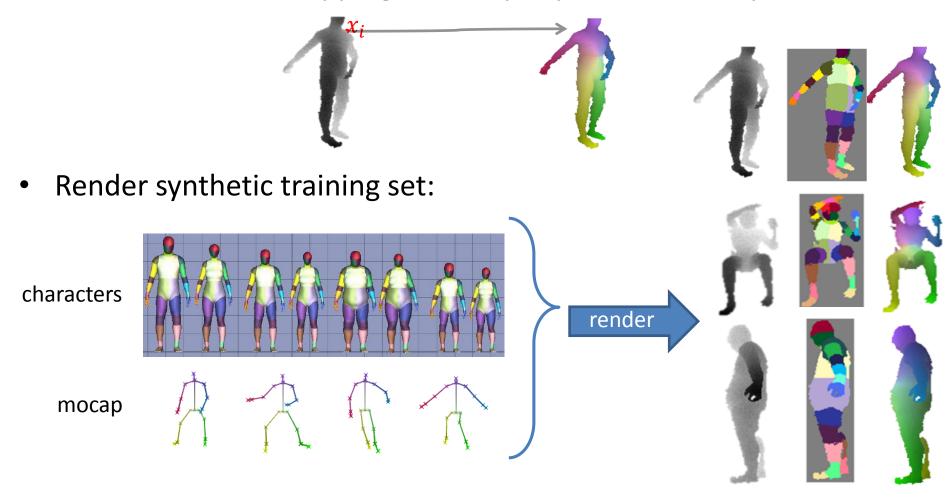
convergence visualization

Discriminative Model: Predicting Correspondences



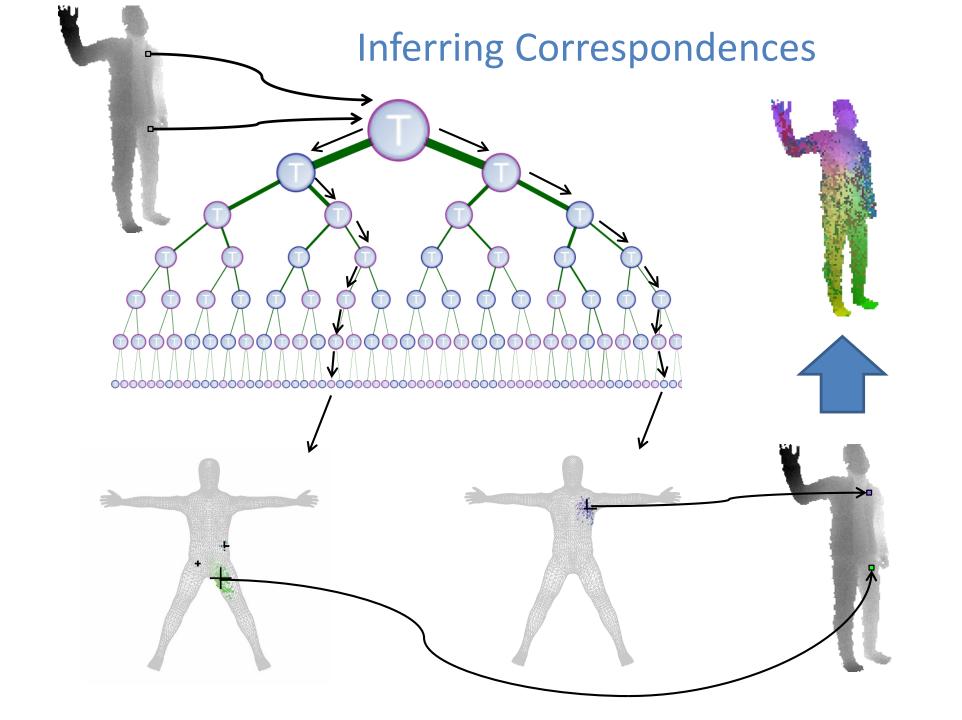
Learning the Correspondences

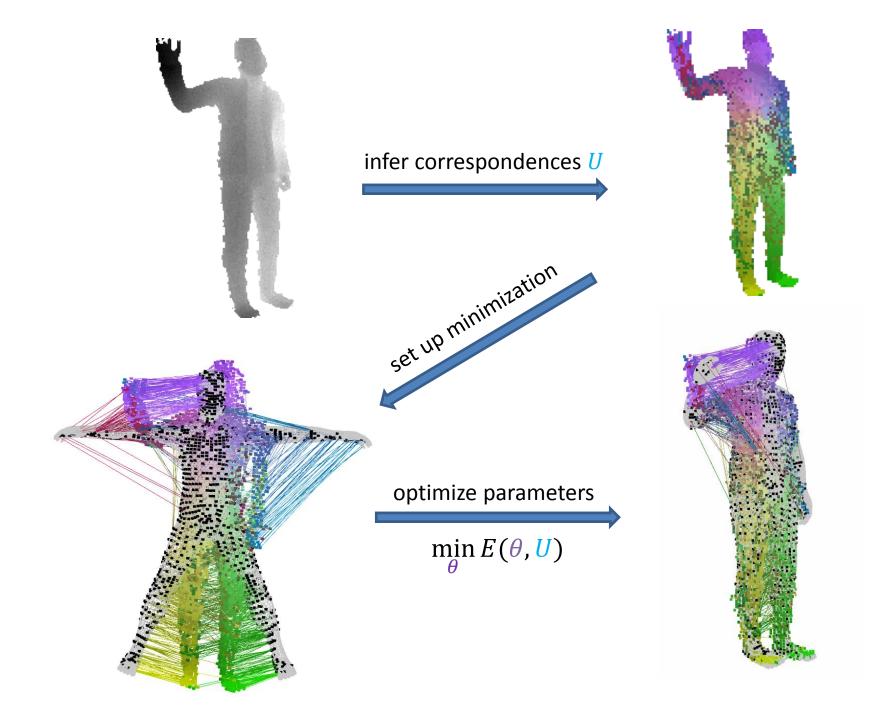
How to learn the mapping from depth pixels to correspondences?



Train regression forest

Each pixel-correspondence pair descends to a leaf in the tree Learning a Regression Model at the Leaf Nodes mean shift mode detection

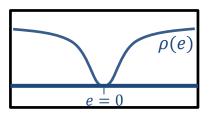




Full Energy

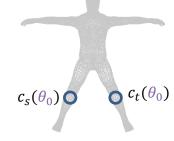
$$E(\theta, \mathbf{U}) = \lambda_{\text{vis}} E_{\text{vis}}(\theta, \mathbf{U}) + \lambda_{\text{prior}} E_{\text{prior}}(\theta) + \lambda_{\text{int}} E_{\text{int}}(\theta)$$

Term E_{vis} approximates hidden surface removal and uses robust error



• Gaussian prior term E_{prior}

• Self-intersection prior term E_{int} approximates interior volume



Energy is robust to noisy correspondences

- Correspondences far from their image points are "ignored"
- Correspondences facing away from the camera are "ignored"
 - avoids model getting stuck in front of the image pixels

Model Convergence View Depth Image Front Side Top XX ×× Predicted Inferred Skeleton and Correspondences **Ground Truth Joints**

Depth Image **Model Convergence View** Front Side Top xx x Predicted Inferred Skeleton and **Ground Truth Joints** Correspondences

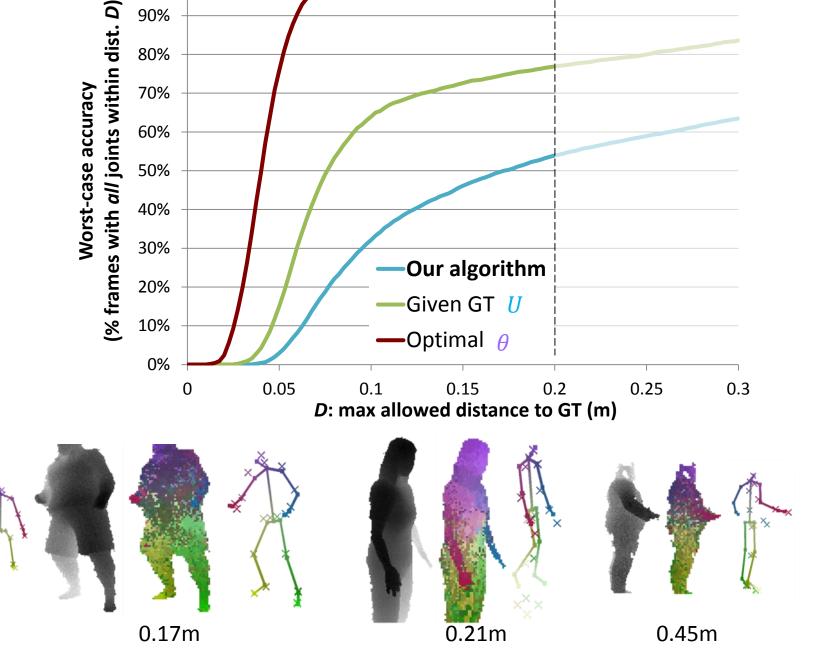
Hard Metric: "Perfect" Frame Accuracy

Results on 5000 synthetic images

0.09m

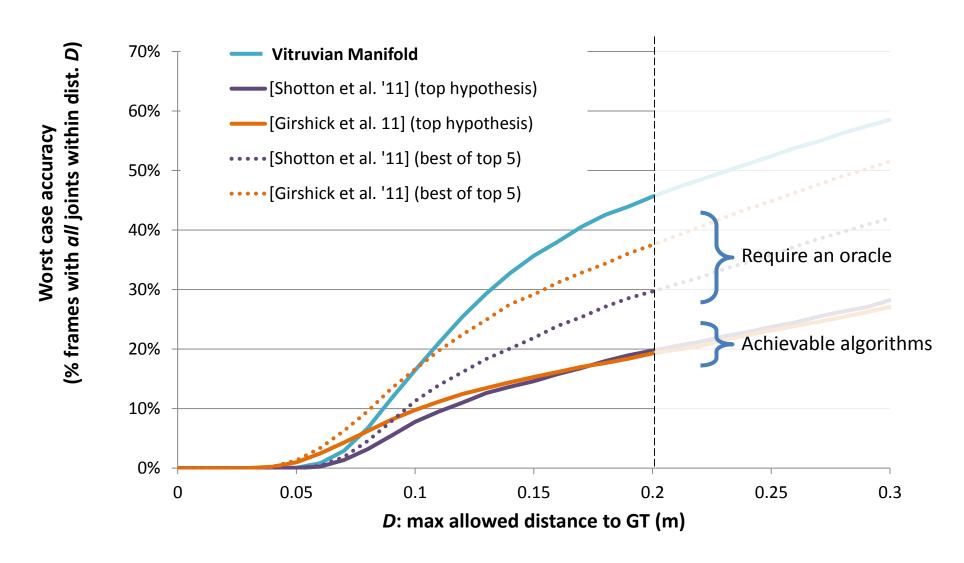
0.11m

D:

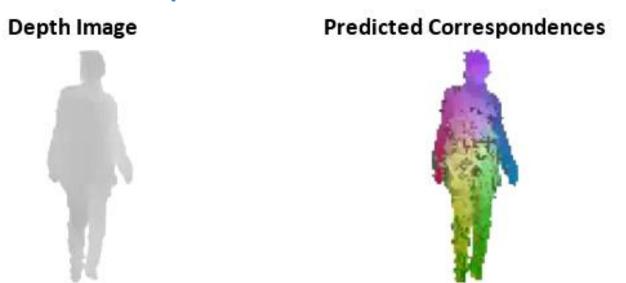


100%

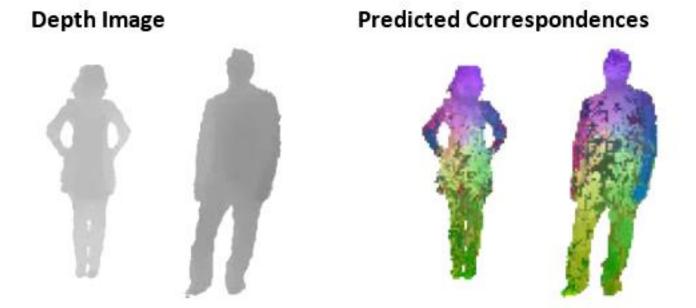
Comparison



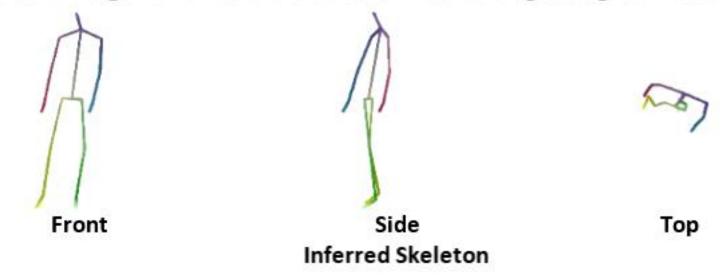
Sequence Result



Each frame fit independently: no temporal information used



Note that the algorithm fits the character with strongest signal in each frame.



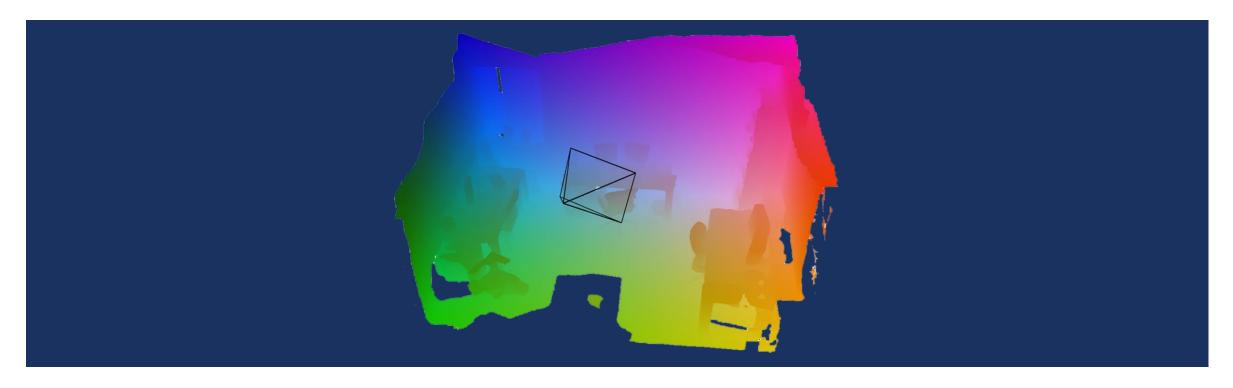
Vitruvian Manifold: Summary

- Predict per-pixel image-to-model correspondences
 - train invariance to body shape, size, and pose

- "One-shot" pose estimation
 - fast, accurate
 - auto-initializes using correspondences

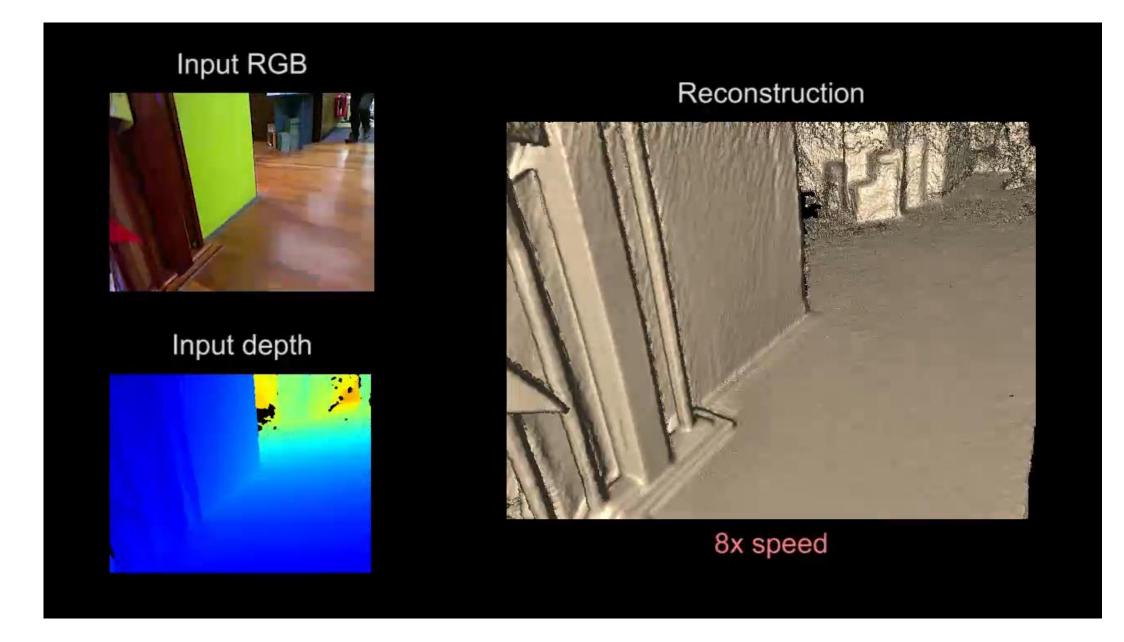
Scene Coordinate Regression Forests For Camera Relocalization In RGB-D Images

JAMIE SHOTTON BEN GLOCKER CHRISTOPHER ZACH SHAHRAM IZADI ANTONIO CRIMINISI ANDREW FITZGIBBON [CVPR 2013]



Joint work with Shahram Izadi, Richard Newcombe, David Kim, Otmar Hilliges, David Molyneaux, Pushmeet Kohli, Steve Hodges, Andrew Davison, Andrew Fitzgibbon.

SIGGRAPH, UIST and ISMAR 2011.



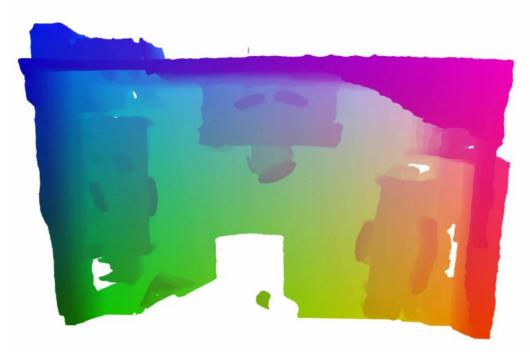
Work by: Chen, Bautembach, Izadi. To appear at SIGGRAPH 2013.

RELOCALIZATION

- Revisit a known scene
- Observe a single frame of (RGB, Depth)
- Infer the 6D camera pose, H
 (camera to scene transformation)

Input RGB

Input Depth



TYPICAL APPROACHES TO CAMERA LOCALIZATION

Tracking – alignment relative to previous frame

- e.g. [Besl & MacKay '92]
- Key point detection \rightarrow local descriptors \rightarrow matching \rightarrow geometric verification e.g. [Holzer et al. '12], [Winder & Brown '07], [Lepetit & Fua '06], [Irschara et al. '09]

precise

- Whole key-frame matching e.g. [Klein & Murray 2008] [Gee & Mayol-Cuevas 2012]
- Epitomic location recognition

[Ni et al. 2009]

approximate

PROBLEMS IN REAL WORLD CAMERA LOCALIZATION

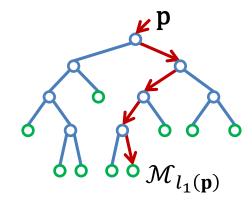
- The real world is less exciting than vision researchers might like
 - > sparse interest points can fail

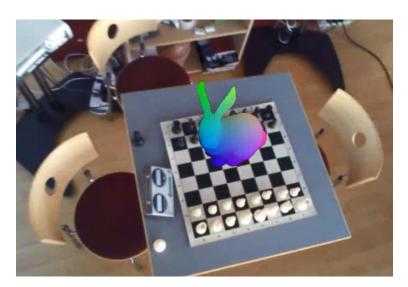
The real world is big

SCENE COORDINATE REGRESSION

- Offline approach to relocalization
 - observe a scene
 - train a regression forest
 - revisit the scene

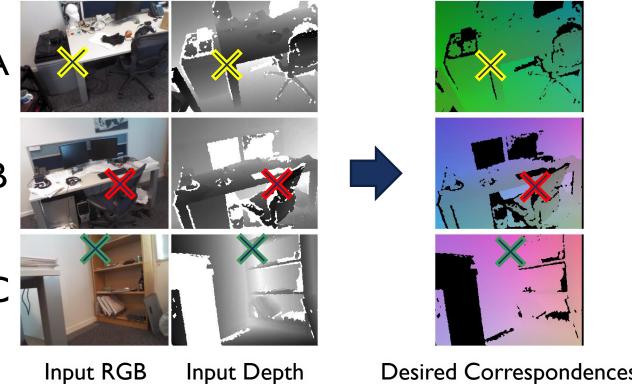
- Aim for really precise localization
 - e.g. suitable for AR overlays
 - from a single frame
 - without an explicit 3D model



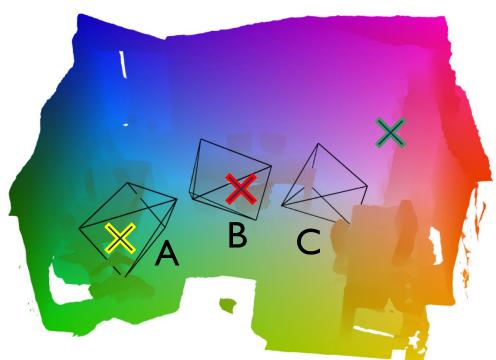


SCENE COORDINATE REGRESSION

Let each pixel predict direct correspondence to 3D point in scene coordinates:





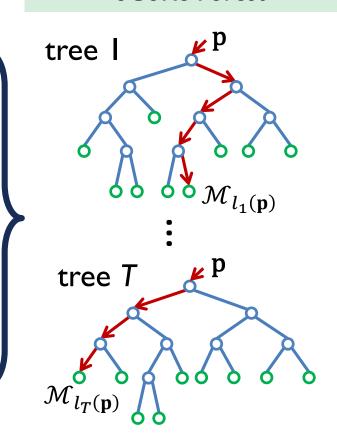


Scene coordinate XYZ ⇔ RGB color space

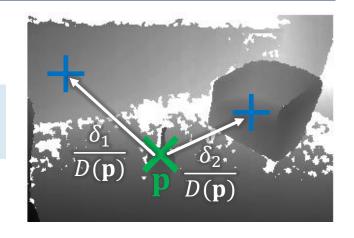
3D model from KinectFusion (only used for visualization)

SCENE COORDINATE REGRESSION (SCORE) FORESTS

SCoRe Forest



Depth & RGB features



$$f_{\phi}^{\text{depth}}(\mathbf{p}) = D\left(\mathbf{p} + \frac{\boldsymbol{\delta}_{1}}{D(\mathbf{p})}\right) - D\left(\mathbf{p} + \frac{\boldsymbol{\delta}_{2}}{D(\mathbf{p})}\right)$$
$$f_{\phi}^{\text{da-rgb}}(\mathbf{p}) = I\left(\mathbf{p} + \frac{\boldsymbol{\delta}_{1}}{D(\mathbf{p})}, c_{1}\right) - I\left(\mathbf{p} + \frac{\boldsymbol{\delta}_{2}}{D(\mathbf{p})}, c_{2}\right)$$

Leaf Predictions

$$\mathcal{M}_l \subset \mathbb{R}^3$$

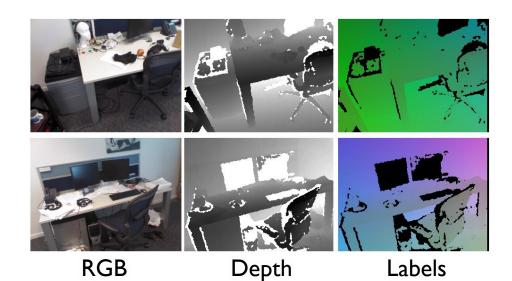
Forest Predictions
$$\mathcal{M}(\mathbf{p}) = \bigcup_{t} \mathcal{M}_{l_t(\mathbf{p})}$$

TRAINING A SCORE FOREST

Training Data

- RGB-D frames with known camera poses H
- Generate 3D pixel labels automatically:

$$\mathbf{m} = H\mathbf{x}$$



 $\{\mathbf{x}\}$

{**m**}

Learning (standard)

- Greedily train tree
- Reduction in spatial variance objective:

$$Q(S_n, \boldsymbol{\theta}) = V(S_n) - \sum_{d \in \{L, R\}} \frac{|S_n^d(\boldsymbol{\theta})|}{|S_n|} V(S_n^d(\boldsymbol{\theta}))$$

with
$$V(S) = \frac{1}{|S|} \sum_{(\mathbf{p}, \mathbf{m}) \in S} \|\mathbf{m} - \bar{\mathbf{m}}\|_2^2$$

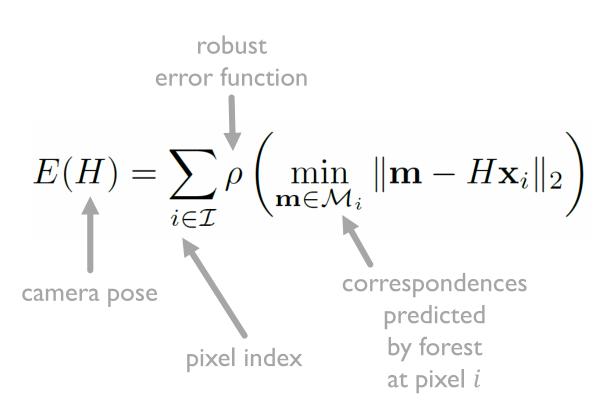
- Regression, not classification
- Mean shift to summarize distribution at leaf l into small set $\mathcal{M}_l \subset \mathbb{R}^3$

SCORE FORESTS: PROPERTIES

- A single-step alternative to the traditional pipeline
 - interest point detection ⇒ description ⇒ matching
- In theory, only three 3D⇔3D correspondences needed to infer 6D camera pose
 - Kabsch algorithm (a.k.a. orthogonal Procrustes alignment)
- Thus, only need to apply forest at three test image pixels
 - any three pixels will do
 - sparseness gives efficiency
 - in practice, noise in prediction means we use more than three pixels

ROBUST CAMERA POSE OPTIMIZATION

Energy Function



Optimization

Preemptive RANSAC

[Nistér ICCV 2003]

With pose refinement

[Chum et al. DAGM 2003]

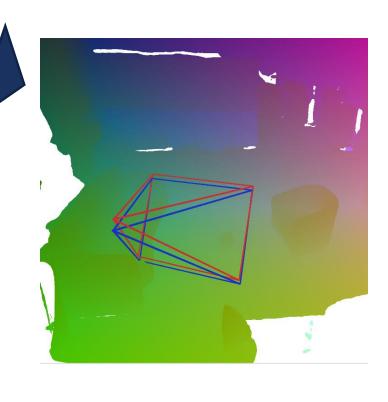
- efficient updates to means & covariances used by Kabsch SVD
- Only a small subset of pixels used

INLYING FOREST PREDICTIONS



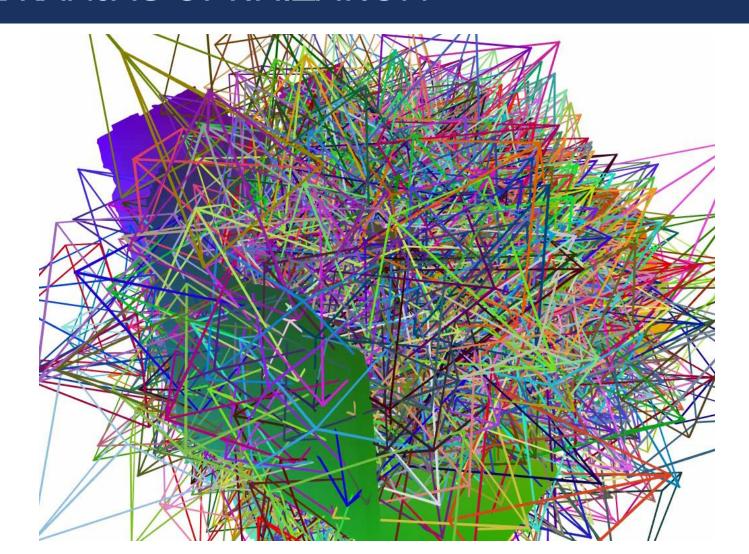
Test images

Inliers for six hypotheses



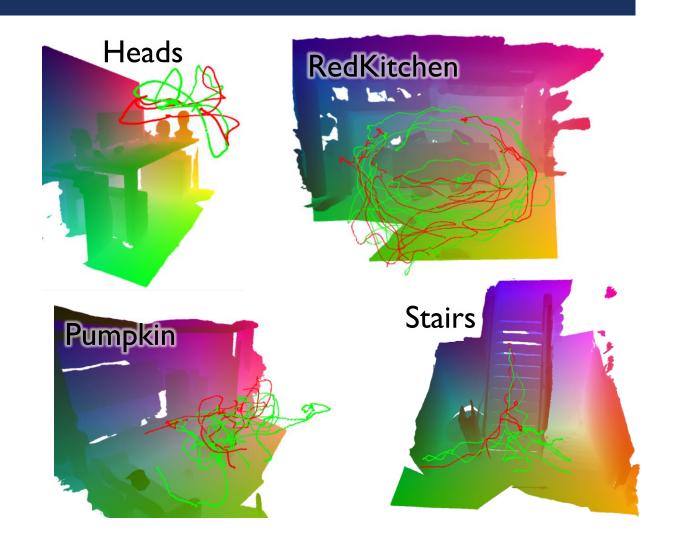
Inferred camera pose

PREEMPTIVE RANSAC OPTIMIZATION



THE 7SCENES DATASET

	Spatial	# Frames		
Scene	Extent	Train	Test	
Chess	3m^3	4k	2k	
Fire	$4\mathrm{m}^3$	2k	2k	
Heads	$2m^3$	1k	1k	
Office	5.5 m 3	6k	4k	
Pumpkin	$6m^3$	4k	2k	
RedKitchen	6m^3	7k	5k	
Stairs	$5m^3$	2k	1k	



Dataset to be released at CVPR

BASELINES FOR COMPARISON

Sparse Key-Points (RGB only)

- ORB matching [Rublee et al. ICCV 2011]
 - FAST detector
 - Rotation aware BRIEF descriptor
 - Hashing for matching
- Geometric verification
 - RANSAC & perspective 3 point
 - Final refinement given inliers

Tiny-Image Key-Frames (RGB & Depth)

- Downsample to 40x30 pixels
- Blur
- Normalized Euclidean distance
- Brute-force search
- Interpolation of 100 closest poses

[Klein & Murray ECCV 2008]

[Gee & Mayol-Cuevas BMVC 2012]

QUANTITATIVE COMPARISON

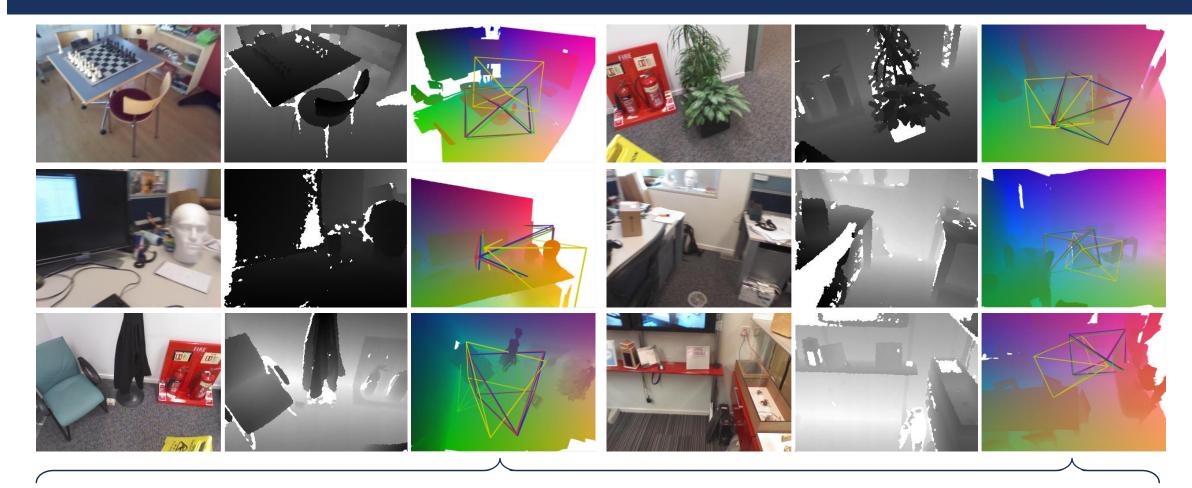
Metric:

Proportion of test frames with < 0.05m translational error and $< 5^{\circ}$ angular error

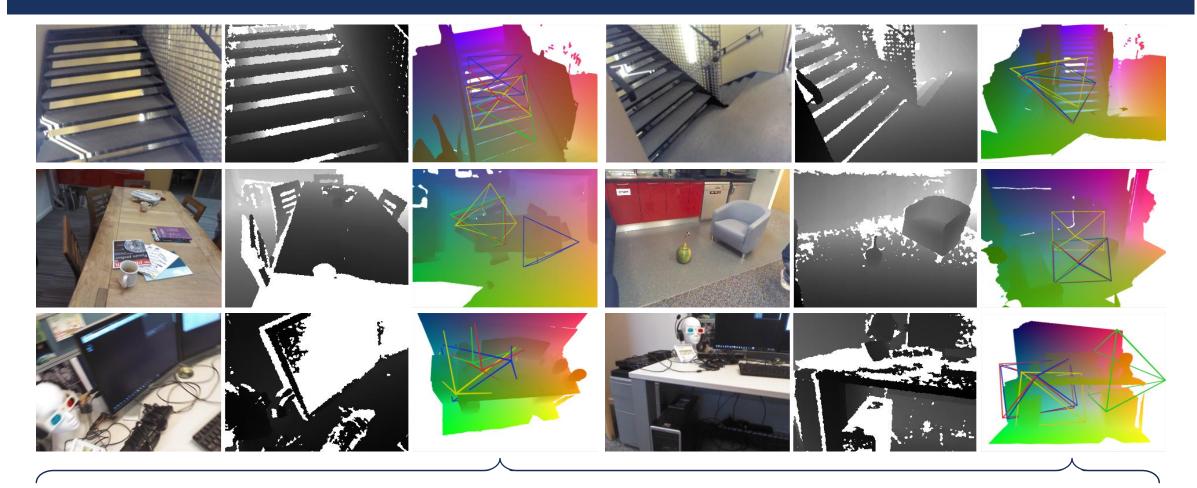
Results:	Baseline	Our Results			
Scene	Tiny-image RGB-D	Sparse RGB	Depth	DA-RGB	DA-RGB + D
Chess	0.0%	70.7%	82.7%	92.6%	91.5%
Fire	0.5%	49.9%	44.7%	82.9%	74.7%
Heads	0.0%	67.6 %	27.0%	49.4%	46.8%
Office	0.0%	36.6%	65.5%	74.9%	79.1 %
Pumpkin	0.0%	21.3%	58.6%	73.7 %	72.7%
RedKitchen	0.0%	29.8%	61.3%	71.8%	72.9 %
Stairs	0.0%	9.2%	12.2%	27.8%	24.4%

Choice of different image features

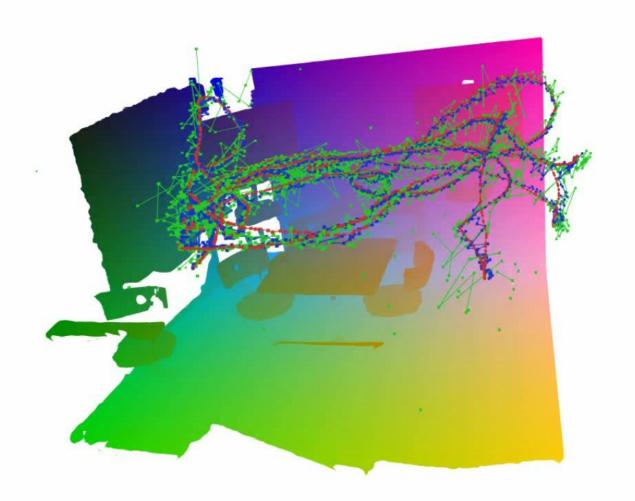
QUALITATIVE COMPARISON



QUALITATIVE COMPARISON



TRACK VISUALIZATION VIDEOS



ground truth

DA-RGB SCoRe forest

RGB sparse baseline

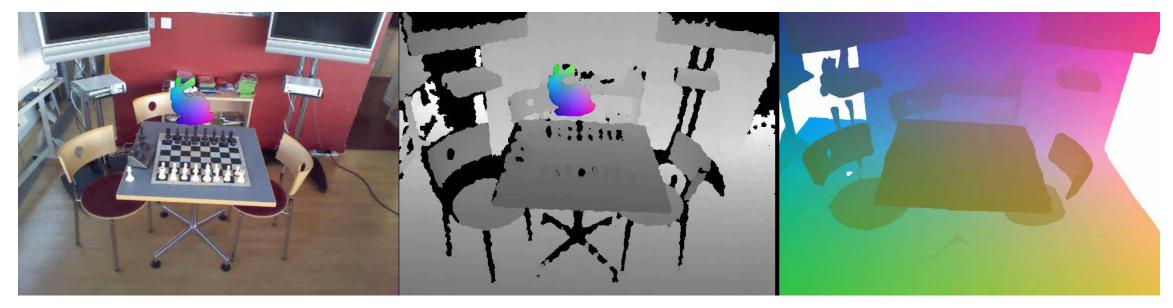
single frame at a time - no tracking

AR VISUALIZATION

RGB input + AR overlay

depth input + AR overlay

rendering of model from inferred pose



SIMPLE ROBUST TRACKING

Add a single extra hypothesis to optimization: the result from previous frame

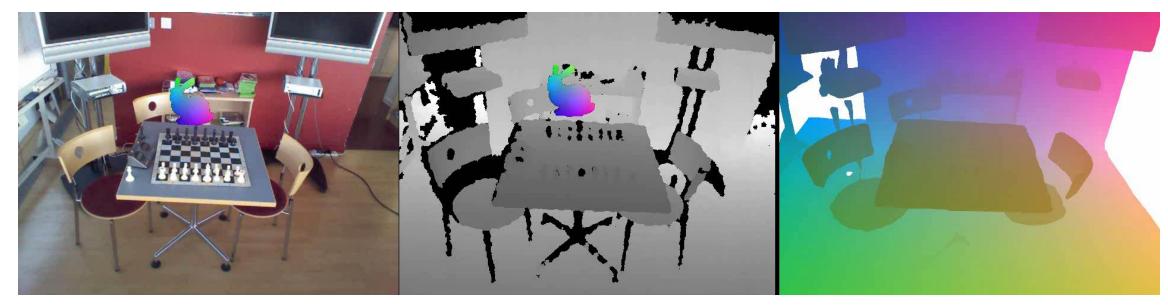
	Our Results			Frame-to-Frame
Scene	Depth	DA-RGB	DA-RGB + D	Tracking
Chess	82.7%	92.6%	91.5%	95.5%
Fire	44.7%	82.9%	74.7%	86.2%
Heads	27.0%	49.4%	46.8%	50.7%
Office	65.5%	74.9%	79.1 %	86.8%
Pumpkin	58.6%	73.7 %	72.7%	76.1%
RedKitchen	61.3%	71.8%	72.9%	82.4%
Stairs	12.2%	27.8%	24.4%	39.2%

AR VISUALIZATION WITH TRACKING

RGB input + AR overlay

depth input + AR overlay

rendering of model from inferred pose



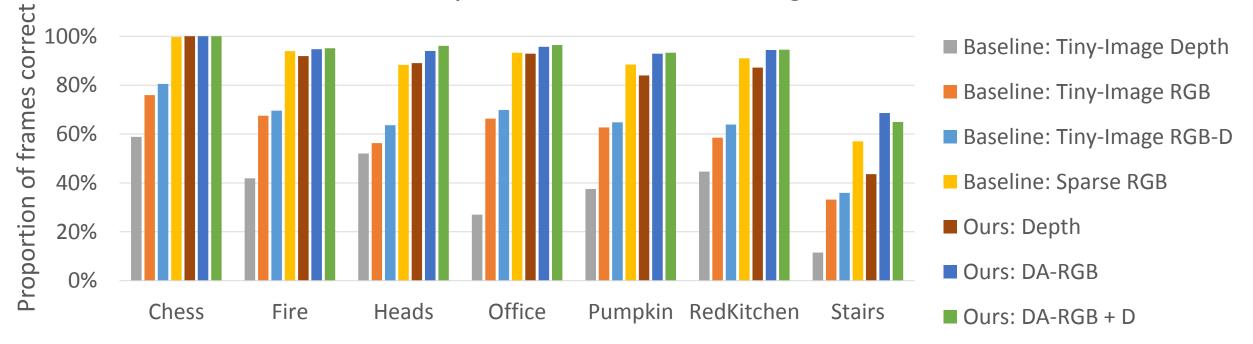
simple robust frame-to-frame tracking enabled

MODEL-BASED REFINEMENT

Model-based refinement

[Besl & McKay PAMI 1992]

- requires 3D model of scene
- run ICP from our inferred pose between observed image and model

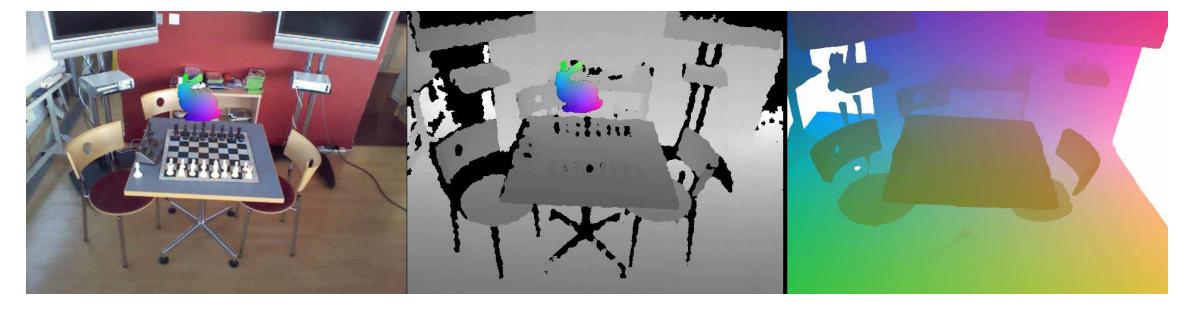


AR VISUALIZATION WITH TRACKING AND REFINEMENT

RGB input + AR overlay

depth input + AR overlay

rendering of model from inferred pose



simple robust frame-to-frame tracking and ICP-based model refinement enabled

Fire Scene

SCoRe Forest (single frame at a time)

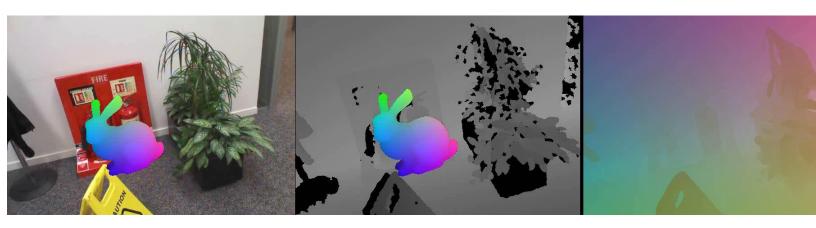
SCoRe Forest + simple robust frame-to-frame tracking

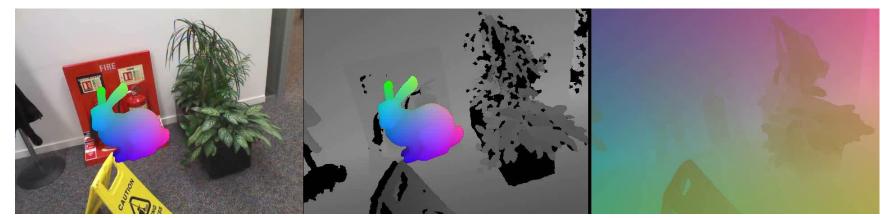
SCoRe Forest

+
simple robust
frame-to-frame tracking
+
ICP refinement to 3D model

RGB input + AR overlay

depth input + AR overlay rendering of model from inferred pose





Pumpkin Scene

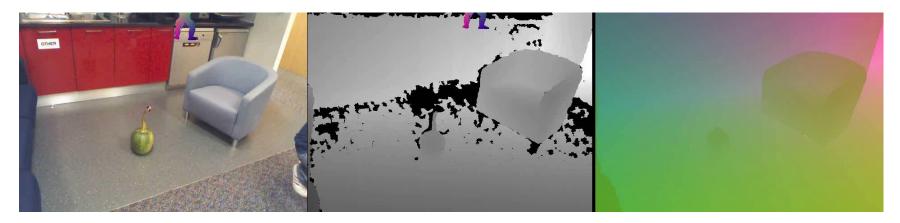
SCoRe Forest (single frame at a time)

SCoRe Forest + simple robust frame-to-frame tracking

SCoRe Forest
+
simple robust
frame-to-frame tracking
+
ICP refinement to 3D model

RGB input + AR overlay

depth input + AR overlay rendering of model from inferred pose

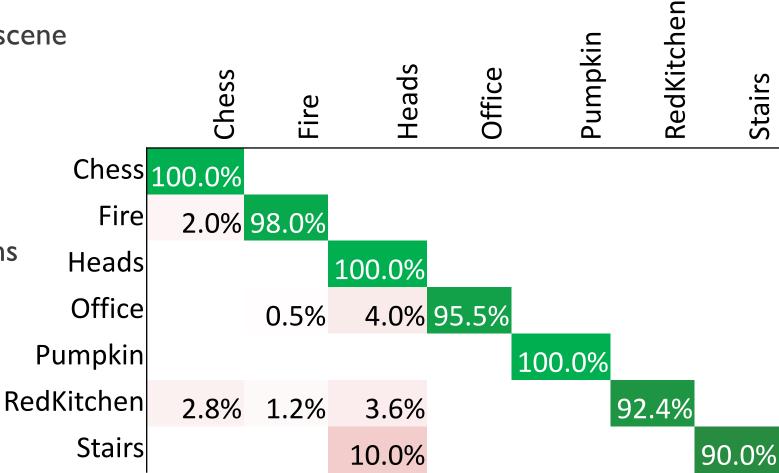


SCENE RECOGNITION

Test frame against all scenes

Scene with lowest energy wins

Single frame only



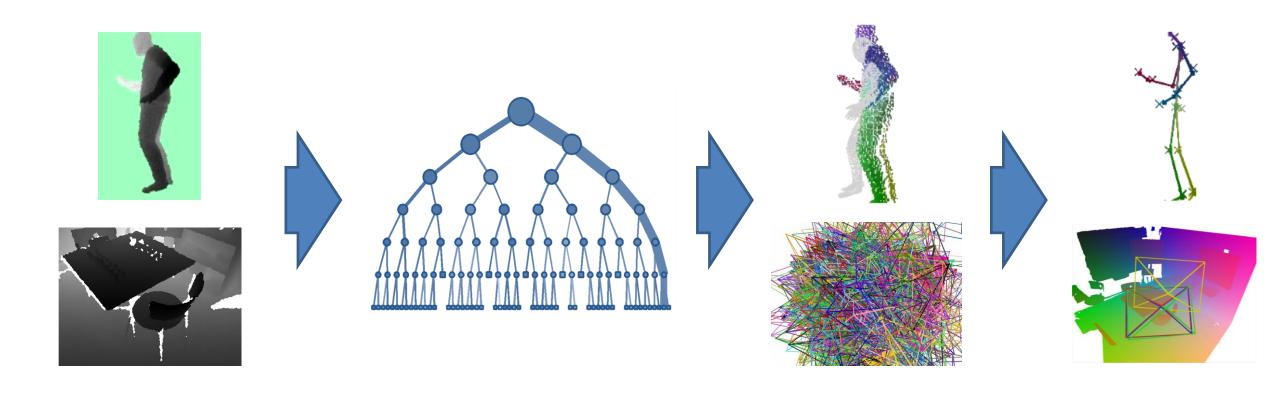
SCENE COORDINATE REGRESSION - SUMMARY

- Scene coordinate regression forests
 - allow accurate relocalization without explicit 3D model
 - provide a single-step alternative to detection/description/matching pipeline
 - can be applied at any valid pixel, not just at interest points

Tracking-by-detection is approaching temporal tracking accuracy

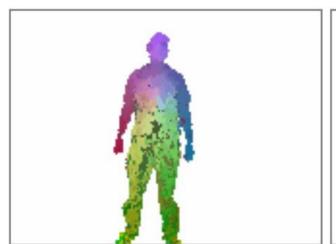
Wrap Up

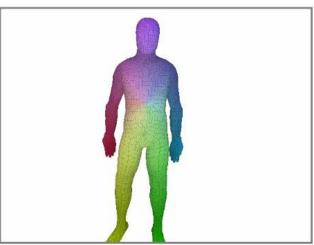
- New depth sensors
- Machine learning + big (synthetic) data
- Per-pixel regression and per-image model fitting

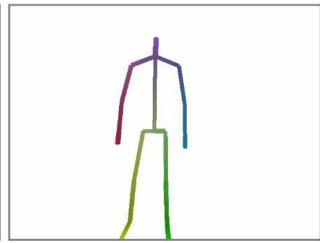


Coming November...

Thank you!







With thanks to:

Andrew Fitzgibbon, Jon Taylor, Ross Girshick, Mat Cook, Andrew Blake, Toby Sharp, Pushmeet Kohli, Ollie Williams, Sebastian Nowozin, Antonio Criminisi, Mihai Budiu, Duncan Robertson, John Winn, Shahram Izadi

Research

The whole Kinect team, especially: Alex Kipman, Mark Finocchio, Ryan Geiss, Richard Moore, Robert Craig, Momin Al-Ghosien, Matt Bronder, Craig Peeper

